Bài 15
a) Trong mặt phẳng phức, cho ba điểm \(A, B, C\) không thẳng hàng theo thứ tự biểu diễn các số phức \({z_1},{z_2},{z_3}\). Hỏi trọng tâm của tam giác \(ABC\) biểu diễn số phức nào?
b) Xét ba điểm \(A, B, C\)) của mặt phẳng phức theo thứ tự biểu diễn ba số phức phân biệt \({z_1},{z_2},{z_3}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\).
Chứng minh rằng \(A, B, C\) là ba đỉnh của một tam giác đều khi và chỉ khi \({z_1} + {z_2} + {z_3} = 0\)
a) Trong mặt phẳng phức gốc \(O, G\) là trọng tâm của tam giác \(ABC\) khi và chỉ khi
\(\overrightarrow {OG} = {1 \over 3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\).
Vậy \(G\) biểu diễn số phức \({1 \over 3}\left( {{z_1} + {z_2} + {z_3}} \right)\) vì \(\overrightarrow {OA} \), \(\overrightarrow {OB} \),\(\overrightarrow {OC} \) theo thứ tự biểu diễn \({z_1},{z_2},{z_3}\).
b) Ba điểm \(A, B, C\) thuộc đường tròn tâm tại gốc tọa độ \(O\) nên tam giác \(ABC\) là tam giác đều khi và chỉ khi trọng tâm \(G\) của nó trùng với tâm đường tròn ngoại tiếp, tức là \(G \equiv O\) hay \({z_1} + {z_2} + {z_3} = 0\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK