Bài 14
a) Cho số phức \(z=x+yi\) . Khi \(z \ne i\), hãy tìm phần thực và phần ảo của số phức \({{z + i} \over {z - i}}\)
b) Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn điều kiện \({{z + i} \over {z - i}}\) là số thực dương.
a) Ta có:
\({{z + i} \over {z - i}} = {{x + \left( {y + 1} \right)i} \over {x + \left( {y - 1} \right)i}} = {{\left[ {x + \left( {y + 1} \right)i} \right]\left[ {x - \left( {y - 1} \right)i} \right]} \over {{x^2} + {{\left( {y - 1} \right)}^2}}} = {{{x^2} + {y^2} - 1} \over {{x^2} + {{\left( {y - 1} \right)}^2}}} + {{2x} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}i\)
Vậy phần thực là \({{{x^2} + {y^2} - 1} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}\), phần ảo là \({{2x} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}\).
b) Với \(z \ne i\), \({{z + i} \over {z - i}}\) là số thực dương khi và chỉ khi
\(\left\{ \matrix{ x = 0 \hfill \cr {x^2} + {y^2} - 1 > 0 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
x = 0 \hfill \cr
{y^2} > 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 0 \hfill \cr
\left[ \matrix{
y > 1 \hfill \cr
y < - 1 \hfill \cr} \right. \hfill \cr} \right.\)
Vậy quỹ tích là trục ảo bỏ đoạn thẳng nối \(I, J\) ( \(I\) biểu diễn \(i\) và \(J\) biểu diễn \(-i\)).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK