Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:
a) \(z^2\) là số thực âm;
b \(z^2\) là là số ảo;
c) \({z^2} = {\left( {\overline z } \right)^2}\);
d) \({1 \over {z - i}}\) là số ảo.
Giả sử \(z=x+yi\)
a) \({z^2} = {\left( {x + yi} \right)^2} = {x^2} - {y^2} + 2xyi\)
\(z^2\) là số thực âm\( \Leftrightarrow \left\{ \matrix{ xy = 0 \hfill \cr {x^2} - {y^2} < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 0 \hfill \cr y \ne 0 \hfill \cr} \right.\)
Vậy tập hợp các điểm cần tìm là trục \(Oy\) trừ điểm \(O\).
b) \({z^2} = {x^2} - {y^2} + 2xyi\)
\(z^2\) là số ảo \( \Leftrightarrow {x^2} - {y^2} = 0 \Leftrightarrow x = y\) hoặc \(y = -x\)
Vậy tập hợp các điểm cần tìm là hai đường phân giác của các gốc tọa độ.
c)
Ta có \({z^2} = {\left( {\overline z } \right)^2} \Leftrightarrow {x^2} - {y^2} + 2xyi ={x^2} - {y^2} - 2xyi\Leftrightarrow xy = 0 \Leftrightarrow \left[ \matrix{ x = 0 \hfill \cr y = 0 \hfill \cr} \right.\)
Vậy tập hợp các điểm cần tìm là các trục tọa độ.
d) \({1 \over {z - i}}\) là số ảo \( \Leftrightarrow z - i\) là số ảo và \(z \ne i \Leftrightarrow z\) là số ảo khác i.
Vậy tập hợp các điểm cầm tìm là trục ảo trừ điểm \(I(0; 1)\) biểu diễn số \(i\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK