Trên mặt phẳng toạ độ, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện:
a) Phần thực của \(z\) bằng \(-2\);
b) Phần ảo của \(z\) bằng \(3\);
c) Phần thực của \(z\) thuộc khoảng \((-1; 2)\);
d) Phần ảo của \(z\) thuộc đoạn \([1; 3]\);
e) Phần thực và phần ảo của \(z\) đều thuộc đoạn \([-2; 2]\).
Cho số phức \(z=x+yi, (x,\, y \in R).\) Khi đó trên mặt phẳng toạ độ \(Oxy\), điểm \(M(x; y)\) là điểm biểu diễn hình học của số phức \(z.\)
Lời giải chi tiết
Giả sử \(z = x + yi\) (\(x, y \in \mathbb R\)), khi đó trên mặt phẳng toạ độ \(Oxy\), điểm \(M(x;y)\) biểu diễn số phức \(z\).
a) Phần thực của \(z\) bằng \(-2\), tức là \(x = -2, \, y \in R\).
Vậy tập hợp các điểm biểu diễn số phức \(z\) là đường thẳng \(x = -2\) trên mặt phẳng toạ độ \(Oxy\)
b) Phần ảo của số phức \(z\) bằng \(3\) nên \(x \in R\) và \(y = 3.\)
Vậy tập hợp điểm biểu diễn số phức \(z\) là đường thẳng \(y = 3\) trên mặt phẳng \(Oxy\).
c) Ta có \(x \in (-1;2)\) và \(y \in \mathbb R\).
Vậy tập hợp số phức \(z\) cần tìm là các điểm nằm giữa hai đường thẳng \(x = -1\) và \(x = 2\) trên mặt phẳng \(Oxy\)
d) Ta có \(x \in \mathbb R\) và \(y \in [1;3]\)
Vậy tập hợp các điểm cần tìm là phần mặt phẳng nằm giữa hai đường thẳng \(y = 1\) và \(y = 3\) (kể cả các điểm trên hai đường đó).
e) Ta có \(x \in [-2; 2]\) và \(y \in [-2; 2]\)
Vậy tập hợp các điểm cần tìm là phần mặt phẳng thuộc hình vuông (kể cả cạnh) được giới hạn bởi bốn đường thẳng \(x=2;x=-2;y=2;y=-2\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK