Cho hàm số \(y=\frac{(m+1)x-2m+1}{x-1}\) (m là tham số) có đồ thị là \((G)\).
a) Xác định \(m\) để đồ thị \((G)\) đi qua điểm \((0 ; -1)\).
b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với \(m\) tìm được.
c) Viết phương trình tiếp tuyến của đồ thị trên tại giao điểm của nó với trục tung.
a) Thay tọa độ điểm đề bài đã cho vào công thức hàm số để tìm m.
b) Thay giá trị m đã tìm được ở câu a vào đồ thị hàm số sau đó khảo sát và vẽ đồ thị hàm số.
c) Đồ thị hàm số cắt trục tung tại điểm có M tung độ \(y = y_0 \Rightarrow M(0;y_0) \).
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại \(M\left( {{x_0};{y_0}} \right)\) bằng công thức: \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).
Lời giải chi tiết
a) Theo đề bài ta có \((0 ; -1) ∈ (G) ⇔\)\(-1=\frac{(m+1)\cdot 0-2m+1}{0-1}\Leftrightarrow m=0.\)
b) Với \(m = 0\) ta được hàm số \(y=\frac{x+1}{x-1}\) (G0).
Tập xác định: \(D=\mathbb R \backslash {\rm{\{ }}1\}\)
* Sự biến thiên:
Ta có: \(y' = {{ - 2} \over {{{(x - 1)}^2}}} < 0\forall x \in D\)
- Hàm số nghịch biến trên khoảng: \((-\infty;1)\) và \((1;+\infty)\).
- Cực trị:
Hàm số không có cực trị.
- Tiệm cận:
\(\eqalign{
& \mathop {\lim y}\limits_{x \to \pm \infty } = 1 \cr
& \mathop {\lim y}\limits_{x \to {1^ - }} = - \infty \cr
& \mathop {\lim y}\limits_{x \to {1^ + }} = + \infty \cr} \)
Tiệm cận đứng là: \(x=1\), tiệm cận ngang là: \(y=1\)
- Bảng biến thiên:
* Đồ thị:
Đồ thị hàm số giao trục \(Ox\) tại \((-1;0)\), trục \(Oy\) tại \((0;-1)\)
Đồ thị hàm số nhận \(I(1;1)\) làm tâm đối xứng.
c) (G0) cắt trục tung tại \(M(0 ; -1)\).
\(y'=\frac{-2}{(x-1)^{2}}\Rightarrow y'(0) = -2\).
Phương trình tiếp tuyến của (G0) tại \(M\) là : \(y - (-1) = y'(0)(x - 0) ⇔ y= -2x - 1\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK