Cho hàm số y = \(\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+m\).
a) Với giá trị nào của tham số \(m\), đồ thị của hàm số đi qua điểm \((-1 ; 1)\) ?
b) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số khi \(m = 1\).
c) Viết phương trình tiếp tuyến của \((C)\) tại điểm có tung độ bằng \(\frac{7}{4}\).
a) Thay tọa độ điểm đề bài đã cho vào công thức hàm số để tìm m.
b) Thay giá trị m đã cho vào công thức hàm số, sau đó khảo sát và vẽ đồ thị hàm số theo các bước.
c) Xác định tọa độ điểm đề bài cho tung độ bằng cách thay tung độ đề bài đã cho vào công thức hàm số để tìm hoành độ các điểm đó.
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại \(M\left( {{x_0};{y_0}} \right)\) bằng công thức: \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).
Lời giải chi tiết
a) Điểm \((-1 ; 1)\) thuộc đồ thị của hàm số \(⇔1=\frac{1}{4}(-1)^{4}+\frac{1}{2}(-1)^{2}+m\Leftrightarrow m=\frac{1}{4}\).
b) Với \(m = 1\) \(\Rightarrow y=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+1\) .
Tập xác định:\(\mathbb R\).
* Sự biến thiên:
Ta có: \(y'=x^{3}+x=x(x^{2}+1) \Rightarrow y' = 0 ⇔ x = 0\).
- Hàm số đồng biến trên khoảng \((0;+\infty)\), nghịch biến trên khoảng \((-\infty;0)\)
- Cực trị:
Hàm số đạt cực tiểu tại \(x=0\); \(y_{CT}=1\)
- Giới hạn:
\(\eqalign{
& \mathop {\lim y}\limits_{x \to - \infty } = + \infty \cr
& \mathop {\lim y}\limits_{x \to + \infty } = + \infty \cr} \)
- Bảng biến thiên:
* Đồ thị
Đồ thị hàm số giao trục \(0y\) tại điểm \((0;1)\).
c) Gọi điểm M thuộc đồ thị hàm số và có tung độ bằng \( \frac{7}{4}\) là: \(M\left( {{x_0}; \frac{7}{4}} \right)\).
Khi đó: \(\frac{1}{4}x_0^4 + \frac{1}{2}x_0^2 + 1 = \frac{7}{4} \Leftrightarrow x_0^4 + 2x_0^2 + 4 = 7\)
\(\begin{array}{l}\Leftrightarrow x_0^4 + 2x_0^2 - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x_0^2 = 1\\x_0^2 = - 3\;\;\left( {ktm} \right)\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}M_1\left( {1;\frac{7}{4}} \right)\\M_2\left( { - 1;\;\frac{7}{4}} \right)\end{array} \right..\end{array}\)
Phương trình tiếp tuyến của \((C)\) tại \(M_1\) là: \(y = y'(1)(x - 1) + \frac{7}{4} ⇔ y = 2x -\frac{1}{4}\)
Phương trình tiếp tuyến của \((C)\) tại \(M_2\) là: \(y= y'(-1)(x + 1)+ \frac{7}{4} ⇔ y = -2x - \frac{1}{4}\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK