Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau :
a) \(y{\rm{ }} = {\rm{ }}2{x^{3}} + {\rm{ }}3{x^2}-{\rm{ }}36x{\rm{ }}-{\rm{ }}10\) ;
b) \(y{\rm{ }} = {\rm{ }}x{^4} + {\rm{ }}2{x^2}-{\rm{ }}3\) ;
c) \(y = x + {1 \over x}\)
d) \(y{\rm{ }} = {\rm{ }}{x^3}{\left( {1{\rm{ }}-{\rm{ }}x} \right)^{2}}\);
e) \(y = \sqrt {{x^2} - x + 1}\)
Quy tắc 1 tìm cực trị của hàm số:
Bước 1: Tìm tập xác định.
Bước 2: Tính \(f'\left( x \right)\). Tìm các điểm mà tại đó \(f'\left( x \right)\) bằng 0 hoặc \(f'\left( x \right)\) không xác định.
Bước 3: Lập bảng biến thiên.
Bước 4: Từ bảng biến thiên suy ra các điểm cực trị.
Lời giải chi tiết
a) Tập xác định: \(D = \mathbb R\)
\(\eqalign{
& y' = 6{{\rm{x}}^2} + 6{\rm{x}} - 36;y' = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 2\Rightarrow {y = - 54} \hfill \cr
x = - 3 \Rightarrow {y = 71} \hfill \cr} \right. \cr} \)
\(\begin{array}{l}y' < 0 \Leftrightarrow x \in \left( { - 3;2} \right)\\y' > 0 \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( {2; + \infty } \right)\end{array}\)
\(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty \)
Bảng biến thiên:
Hàm số đạt cực đại tại \(x = -3\) và \(y\)CĐ \(= 71\)
Hàm số đạt cực tiểu tại \(x = 2\) và \(y\)CT \(= -54\)
b) Tập xác định: \(D =\mathbb R\)
\(y' = 4{{\rm{x}}^3} + 4{\rm{x}} = 4{\rm{x}}\left( {{x^2} + 1} \right)\);
\(y' = 0 \Leftrightarrow x = 0\Rightarrow {y = - 3}\)
\(\begin{array}{l}y' > 0 \Rightarrow x > 0\\y' < 0 \Rightarrow x < 0\end{array}\)
\(\mathop {\lim }\limits_{x \to - \infty } y = + \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty \)
Bảng biến thiên:
Hàm số đạt cực tiểu tại \(x = 0\) và \(y\)CT \(= -3\)
c) Tập xác định: \(D = \mathbb R\)\ { 0 }
\(\eqalign{
& y' = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}};y' = 0 \cr
& \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow \left[ \matrix{
x = 1 \Rightarrow {y = 2} \hfill \cr
x = - 1 \Rightarrow {y = - 2} \hfill \cr} \right. \cr}\)
\(\begin{array}{l}y' < 0 \Leftrightarrow x \in \left( { - 1;1} \right)\\y' > 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\end{array}\)
\(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty \)
\(\mathop {\lim }\limits_{x \to {0^ - }} y = - \infty ;\,\,\mathop {\lim }\limits_{x \to {0^ + }} y = + \infty \)
Bảng biến thiên
Hàm số đạt cực đại tại \(x = -1\), \(y\)CĐ \(= -2\)
Hàm số đạt cực tiểu tại \(x = 1\), \(y\)CT \(= 2\)
d) Tập xác định \(D = \mathbb R\)
\( y' = 3{{\rm{x}}^2}{\left( {1 - x} \right)^2} - 2{{\rm{x}}^3}\left( {1 - x} \right) \)
\(= {x^2}\left( {1 - x} \right)\left( {3 - 5{\rm{x}}} \right)\)
\(\eqalign{
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 1\Rightarrow {y = 0} \hfill \cr
x = {3 \over 5}\Rightarrow {y = {{108} \over {3125}}} \hfill \cr
x = 0 \hfill \cr} \right. \cr} \)
\(\begin{array}{l}y' < 0 \Leftrightarrow x \in \left( {\frac{3}{5};1} \right)\\y' > 0 \Leftrightarrow x \in \left( { - \infty ;\frac{3}{5}} \right) \cup \left( {1; + \infty } \right)\\\mathop {\lim }\limits_{x \to -\infty } y = - \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty \end{array}\)
Bảng biến thiên:
Hàm số đạt cực đại tại \(x = {3 \over 5};y = {{108} \over {3125}}\)
Hàm số đạt cực tiểu tại \(x = 1\), \(y\)CT =\( 0\)
e) Vì \(x^2\) –\( x + 1 > 0, ∀ ∈ \mathbb R\) nên tập xác định : \(D = \mathbb R\)
\(y' = {{2{\rm{x}} - 1} \over {2\sqrt {{x^2} - x + 1} }};y' = 0 \Leftrightarrow x = {1 \over 2}\Rightarrow {y = {{\sqrt 3 } \over 2}}\)
\(\begin{array}{l}y' > 0 \Leftrightarrow x > \frac{1}{2};\,\,y' < 0 \Leftrightarrow x < \frac{1}{2}\\
\mathop {\lim }\limits_{x \to - \infty } y = + \infty ,\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty \end{array}\)
Bảng biến thiên:
Hàm số đạt cực tiểu tại \(x = {1 \over 2};{y_{CT}} = {{\sqrt 3 } \over 2}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK