Bài 8. Một học sinh chứng minh mệnh đề “Với \(k\) là một số nguyên dương tùy ý, nếu \({8^k} + 1\) chia hết cho 7 thì \({8^{k + 1}} + 1\) cũng chia hết cho 7 ” như sau :
Ta có: \({8^{k + 1}} + 1 = 8\left( {{8^k} + 1} \right) - 7.\) Từ đây và giả thiết “\({8^k} + 1\) chia hết cho 7”, hiển nhiên suy ra \({8^{k + 1}} + 1\) chia hết cho 7.
Hỏi từ chứng minh trên, bạn học sinh đó có thể kết luận được “\({8^n} + 1\) chia hết cho 7 với mọi \(n \in \mathbb N^*\) ” hay không ? Vì sao ?
Không thể kết luận “\({8^n} + 1\) chia hết cho 7 với mọi \(n \in \mathbb N^*\) ”, vì chưa kiểm tra tính đúng của mệnh đề đó khi \(n = 1\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK