Bài 1 trang 82 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng với \(n \in {\mathbb N}^*\), ta có đẳng thức:

a) \(2 + 5+ 8+.... + 3n - 1 =\frac{n(3n+1)}{2}\);

b) \( \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}\);

c) \({1^2} + {2^2} + {3^2} + ... + {n^2}= \frac{n(n+1)(2n+1)}{6}\)

Hướng dẫn giải

Vận dụng phương pháp chứng minh quy nạp toán học.

Bước 1: Chứng minh mệnh đề đúng với \(n=1\).

Bước 2: Giả sử đẳng thức đúng đến \(n=k \ge 1\) (giả thiết quy nạp). Chứng minh đẳng thức đúng đến \(n=k+1\).

Khi đó đẳng thức đúng với mọi \(n \in N^*\).

Lời giải chi tiết

a) Với \(n = 1\), vế trái chỉ có một số hạng là \(2\), vế phải bằng \( \frac{1.(3.1+1)}{2} = 2\). Do đó hệ thức a) đúng với \(n = 1\).

Đặt vế trái bằng  \(S_n\)

Giả sử đẳng thức a) đúng với \(n = k ≥ 1\), tức là 

 \(S_k=2 + 5 + 8 + …+ 3k – 1 =  \frac{k(3k+1)}{2}\)

Ta phải chứng minh rằng a) cũng đúng với \(n = k + 1\), nghĩa là phải chứng minh

\(S_{k+1}= 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) \)

\(=   \frac{(k+1)(3(k+1)+1)}{2}\)

Thật vậy, từ giả thiết quy nạp, ta có: \({S_{k + 1}} = {\rm{ }}{S_k} + {\rm{ }}3k{\rm{ }} + {\rm{ }}2\) = \( \frac{k(3k+1)}{2} + 3k + 2\)

= \( \frac{3k^{2}+k+6k+4}{2}\) \( =\frac{3(k^{2}+2k+1)+k+1}{2}=\frac{(k+1)(3(k+1)+1)}{2}\) (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức a) đúng với mọi \(n \in {\mathbb N}^*\)

b) Với \(n = 1\), vế trái bằng \( \frac{1}{2}\), vế phải bằng \( \frac{1}{2}\), do đó hệ thức đúng với \(n=1\).

Đặt vế trái bằng \(S_n\).

Giả sử hệ thức b) đúng với \(n = k ≥ 1\), tức là \( S_{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^{k}}=\frac{2^{k}-1}{2^{k}}\)

Ta phải chứng minh \( S_{k+1}=\frac{2^{k+1}-1}{2^{k+1}}\).

Thật vậy, từ giả thiết quy nạp, ta có: \( S_{k+1}=S_{k}+\frac{1}{2^{k+1}}=\frac{2^{k}-1}{2^{k}}+\frac{1}{2^{k+1}}\)

          \(= \frac{2^{k+1}-2+1}{2^{k+1}}=\frac{2^{k+1}-1}{2^{k+1}}\) (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi \(n \in {\mathbb N}^*\)

c) Với \(n = 1\), vế trái bằng \(1\), vế phải bằng \( \frac{1(1+1)(2+1)}{6}= 1\) nên hệ thức c) đúng với \(n = 1\).

Đặt vế trái bằng \(S_n\).

Giả sử hệ thức c) đúng với \(n = k  ≥ 1\), tức là

\(S_k= {1^2} + {2^2} + {3^2} + ... + {k^2}=\frac{k(k+1)(2k+1)}{6}\)

Ta phải chứng minh \( S_{k+1}=\frac{(k+1)(k+2)(2(k+1)+1)}{6}\)

Thật vậy, từ giả thiết quy nạp ta có: 

\({S_{k + 1}} = {\rm{ }}{S_k} + {\rm{ }}{\left( {k{\rm{ }} + {\rm{ }}1} \right)^2}\) =  \( \frac{k(k+1)(2k+1)}{6}+(k+1)^{2}\)\(= (k + 1).\frac{k(2k+1)+6(k+1)}{6}  = (k + 1)\frac{2k^{2}+k+6k+6}{6}\)       

\( =\frac{(k+1)(2k(k+2)+3(k+2)}{6}=\frac{(k+1)(k+2)(2(k+1)+1)}{6}\) (đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức c) đúng với mọi  \(n \in {\mathbb N}^*\).


Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK