Chứng minh rằng với \(n\in {\mathbb N}^*\) ta luôn có:
a) \({n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\) chia hết cho \(3\);
b) \({4^n} + {\rm{ }}15n{\rm{ }} - {\rm{ }}1\) chia hết cho \(9\);
c) \({n^3} + {\rm{ }}11n\) chia hết cho \(6\).
Vận dụng phương pháp chứng minh quy nạp toán học.
Bước 1: Chứng minh mệnh đề đúng với \(n=1\).
Bước 2: Giả sử đẳng thức đúng đến \(n=k \ge 1\) (giả thiết quy nạp). Chứng minh đẳng thức đúng đến \(n=k+1\).
Khi đó đẳng thức đúng với mọi \(n \in N^*\).
Lời giải chi tiết
a) Đặt \(S_n={n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\)
Với \(n = 1\) thì \(S_1= 9\) chia hết cho \(3\)
Giả sử với \(n = k ≥ 1\), \(S_k= ({k^3} + {\rm{ }}3{k^2} + {\rm{ }}5k) \vdots\) \( 3\)
Ta phải chứng minh rằng \(S_{k+1}\)\( \vdots\) \(3\)
Thật vậy :
\(S_{k+1}={\left( {k{\rm{ }} + {\rm{ }}1} \right)^3} + {\rm{ }}3{\left( {k{\rm{ }} + {\rm{ }}1} \right)^2} + {\rm{ }}5\left( {k{\rm{ }} + {\rm{ }}1} \right)\)
\( = {k^3}{\rm{ }} + {\rm{ }}3{k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}3{k^2} + {\rm{ }}6k{\rm{ }} + {\rm{ }}3{\rm{ }} + {\rm{ }}5k{\rm{ }} + {\rm{ }}5\)
\( = {\rm{ }}{k^3} + {\rm{ }}3{k^2} + {\rm{ }}5k{\rm{ }} + {\rm{ }}3{k^2} + {\rm{ }}9k{\rm{ }} + {\rm{ }}9\)
hay \({S_{k + 1}} = {S_k} + {\rm{ }}3({k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}3)\)
Theo giả thiết quy nạp thì \(S_k \) \( \vdots\) \(3\), mặt khác \(3({k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}3) \vdots\) \(3\) nên \(S_{k+1} \vdots\) \(3\).
Vậy \({n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\) chia hết cho \(3\) với mọi \(n\in {\mathbb N}^*\) .
b) Đặt \({S_n} = {4^n} + {\rm{ }}15n{\rm{ }} - {\rm{ }}1\)
Với \(n{\rm{ }} = {\rm{ }}1,{S_1} = {\rm{ }}{4^1} + {\rm{ }}15.1{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}18\) nên \(S_1 \vdots\) \(9\)
Giả sử với \(n = k ≥ 1\) thì \({S_k} = {\rm{ }}{4^k} + {\rm{ }}15k{\rm{ }} - {\rm{ }}1\) chia hết cho \(9\).
Ta phải chứng minh \(S_{k+1} \vdots\) \(9\).
Thật vậy, ta có:
\({S_{k + 1}} = {\rm{ }}{4^{k{\rm{ }} + {\rm{ }}1}} + {\rm{ }}15\left( {k{\rm{ }} + {\rm{ }}1} \right){\rm{ }}-{\rm{ }}1\)
\( = {\rm{ }}4({4^k} + {\rm{ }}15k{\rm{ }}-{\rm{ }}1){\rm{ }}-{\rm{ }}45k{\rm{ }} + {\rm{ }}18{\rm{ }} = {\rm{ }}4{S_k}-{\rm{ }}9\left( {5k{\rm{ }}-{\rm{ }}2} \right)\)
Theo giả thiết quy nạp thì \(S_k \vdots\) \(9\) nên \(4S_k \vdots\) \(9\), mặt khác \(9(5k - 2) \vdots\) \(9\), nên \(S_{k+1} \vdots\) \(9\)
Vậy \((4^n+ 15n - 1) \vdots\) \(9\) với mọi \(n\in {\mathbb N}^*\)
c) Đặt \({S_n} = {n^3} + {\rm{ }}11n\)
Với \(n = 1\), ta có \({S_1} = {\rm{ }}{1^3} + {\rm{ }}11.1{\rm{ }} = {\rm{ }}12\) nên \(S_1\) \( \vdots\) \(6\)
Giả sử với \(n = k ≥ 1\) , \({S_{k}} = {k^3} + {\rm{ }}11k \) chia hết cho 6.
Ta phải chứng minh \(S_{k+1}\)\( \vdots\) 6
Thật vậy, ta có
\({S_{k + 1}} = {\rm{ }}\left( {k{\rm{ }} + {\rm{ }}1} \right)^3{\rm{ }} + {\rm{ }}11\left( {k{\rm{ }} + {\rm{ }}1} \right){\rm{ }}\)
\(= {\rm{ }}{k^3} + {\rm{ }}3k^2+ {\rm{ }}3k{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}11k{\rm{ }} + {\rm{ }}11\)
\( = ({\rm{ }}{k^3} + {\rm{ }}11k){\rm{ }} + {\rm{ }}3({k^2} + {\rm{ }}k{\rm{ }} + {\rm{ }}4){\rm{ }} = {\rm{ }}{S_k} + {\rm{ }}3({k^2} + {\rm{ }}k{\rm{ }} + {\rm{ }}4)\)
Theo giả thiết quy nạp thì \(S_k\)\( \vdots\) \(6\), mặt khác \(k^2+ k + 4 = k(k + 1) + 4\) là số chẵn nên \(3(k^2+ k + 4)\) \( \vdots\) \(6\), do đó \(S_{k+1}\)\( \vdots\) \(6\)
Vậy \(n^3+ 11n\) chia hết cho \(6\) với mọi \(n\in {\mathbb N}^*\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK