Bài 5 trang 83 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng số đường chéo của một đa giác lồi \(n\) cạnh là \({{n(n - 3)} \over 2}\)

Hướng dẫn giải

Ta chứng minh khẳng định đúng với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).

Sử dụng phương pháp quy nạp toán học để chứng minh.

Lời giải chi tiết

Ta chứng minh khẳng định đúng với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).

*) Với \(n = 4\), ta có tứ giác nên nó có hai đường chéo.

Mặt khác thay \(n = 4\) vào công thức, ta có số đường chéo của tứ giác theo công thức là: \({{4(4 - 3)} \over 2} = 2\)

Vậy khẳng định đúng với \(n= 4\).

*) Giả sử khẳng định đúng với \(n = k ≥ 4\), tức là đa giác lồi \(k\) cạnh có số đường chéo là \({{k(k - 3)} \over 2}\)

Vậy số đường chéo của đa giác \(k + 1\) cạnh là

   \({{k(k - 3)} \over 2}+ k - 2 + 1 ={{{k^2} - k - 2} \over 2} = {{(k + 1)((k + 1) - 3)} \over 2}\)

Như vậy, khẳng định cũng đúng với đa giác \(k + 1\) cạnh

Vậy bài toán đã được chứng minh.

 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK