Giải hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ (a^{2} + 1)x + 6y = 2a & & \end{matrix}\right.\) trong mỗi trường hợp sau:
a) \(a = -1\); b) \(a = 0\); c) \(a = 1\).
+) Dùng quy tắc thế biến đổi hệ phương trình đã cho để được một hệ phương trình mới trong đó có một phương trình một ẩn.
+) Giải phương trình một ẩn vừa có rồi suy ra nghiệm của hệ.
Lời giải chi tiết
a) Thay \(a = -1\) vào hệ, ta được:
\(\left\{\begin{matrix} x + 3y = 1 & & \\ {\left((-1)^2+1 \right)}x+ 6y = 2.(-1) & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} x + 3y = 1 & & \\ 2x+ 6y = -2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x + 3y = 1 & & \\ x+ 3y = -1 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = 1 -3y & & \\ (1-3y)+ 3y = -1 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x = 1 -3y & & \\ 1 = -1 (vô \ lý )& & \end{matrix}\right.\)
Vậy hệ phương trình trên vô nghiệm.
b) Thay \(a = 0\) vào hệ, ta được:
\(\left\{ \matrix{
x + 3y = 1 \hfill \cr
\left( {0 + 1} \right)x + 6y = 2.0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x + 6y = 0 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
- 6y + 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = - 6y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = - 6. \dfrac{ - 1}{3} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = 2 \hfill \cr} \right.\)
Hệ phương trình có nghiệm \( {\left(2; -\dfrac{1}{3} \right)} \).
c) Thay \(a = 1\) vào hệ, ta được:
\(\left\{ \matrix{
x + 3y = 1 \hfill \cr
({1^2} + 1)x + 6y = 2.1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
2x + 6y = 2 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x + 3y = 1 \hfill \cr} \right.\)
Hai phương trình bậc nhất hai ẩn có các hệ số giống nhau nên đường thẳng biểu diễn tập nghiệm của chúng trùng nhau. Do đó hệ phương trình đã cho có vô số nghiệm.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK