Bài 1: Tìm m để hệ phương trình sau vô nghiệm :
\(\left\{ \begin{array}{l}
4x - y = 3\\
mx + 3y = 5
\end{array} \right.\)
Bài 2: Tìm m và n để hệ phương trình :
\(\left\{ \begin{array}{l}
mx - y = 5\\
nx + my = 4
\end{array} \right.\)
có một nghiệm là ( 2; − 1).
Bài 3: Hai hệ phương trình sau có tương đương không ?
(A)\(\left\{ \matrix{ x - y = 1 \hfill \cr 2x - 2y = 2 \hfill \cr} \right.\) và (B) \(\left\{ \matrix{ 2x - y = 1 \hfill \cr 4x - 2y = 2. \hfill \cr} \right.\)
Bài 1: Viết lại hệ \(\left\{ \matrix{ y = 4x - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{d_1}} \right) \hfill \cr y = - {m \over 3}x + {5 \over 3}\,\,\,\,\,\,\,\left( {{d_2}} \right) \hfill \cr} \right.\)
Hệ vô nghiệm khi và chỉ khi hai đường thẳng ( d1) và (d2) song song:
\(\left\{ \matrix{ - {m \over 3} = 4 \hfill \cr - 3 \ne {5 \over 3} \hfill \cr} \right. \Leftrightarrow m = - 12.\)
Bài 2: Thế \(x = 2\) và \(y = − 1\) vào hệ đã cho, ta được : \(\left\{ \matrix{ 2m + 1 = 5 \hfill \cr 2n - m = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ m = 2 \hfill \cr n = 3. \hfill \cr} \right.\)
Bài 3: Xét hệ (A). Hệ có vô số nghiệm.
Công thức nghiệm tổng quát
Xét hệ (B). Hệ có vô số nghiệm.
Công thức nghiệm tổng quát : \((x; x-1)\)
Dễ thấy hai đường thẳng \(y = x – 1\) và \(y = 2x – 1\) không trùng nhau. Vậy tập nghiệm của hai hệ khác nhau nên hai hệ không tương đương ( có thể chỉ ra môt nghiệm \(( 2; 1)\) thỏa (A) mà không thỏa (B)).
Chú ý: Hai hệ cùng vô nghiệm thì tương đương với nhau.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK