Cho tam giác \(ABC\) có \(AB=3,\ AC=4,\ BC=5\). Vẽ đường tròn \((B;BA)\). Chứng minh rằng \(AC\) là tiếp tuyến của đường tròn.
+) Định lí Pytago đảo: Tam giác \(ABC\) có \(BC^2=AC^2+AB^2\) thì là tam giác vuông tại \(A\).
+) Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn.
Lời giải chi tiết
Xét tam giác \(ABC\) vuông tại \(A\) có:
\(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=9+16=25\)
Suy ra \(BC^2=AB^2+AC^2\)
Theo định lý Pytago đảo, ta có tam giác \(ABC\) là tam giác vuông tại \(A\).
Suy ra \(AB \bot AC\) tại \(A\).
Mà \(BA\) là bán kính.
Vậy \(AC\) là tiếp tuyến của đường tròn
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK