Bài 5 trang 108 SGK Toán 7 tập 1

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Ta gọi tam giác có ba góc nhọn là tam giác nhọn, tam giác có một góc tù là tam giác tù. Gọi tên tam giác nhọn, tam giác tù, tam giác vuông trên hình 54.

Hướng dẫn giải

+ Áp dụng định lý tổng ba góc trong một tam giác để tính số đo các góc chưa biết.

+ Sử dụng định nghĩa tam giác nhọn, tam giác tù, tam giác vuông để gọi tên các tam giác. 

Lời giải chi tiết

 a) Áp dụng định lí tổng ba góc của một tam giác vào tam giác \(ABC\) ta đươc:

$$\eqalign{
& \widehat A + \widehat B + \widehat C = {180^0} \cr
& \Rightarrow \widehat A = {180^0} - \widehat B - \widehat C \cr&\;\;\;\;\;\;\;\;\,= {180^0} - {62^0} - {28^0} = {90^0} \cr} $$

Do đó tam giác \(ABC\) vuông tại \(A\).

b)  Áp dụng định lí tổng ba góc của một tam giác vào tam giác \(DEF\) ta đươc:                

$$\eqalign{
& \widehat D + \widehat E + \widehat F = {180^0} \cr
& \Rightarrow \widehat D = {180^0} - \widehat E - \widehat F \cr&\;\;\;\;\;\;\;\;\;\,= {180^0} - {45^0} - {37^0} = {98^0} \cr} $$

Do đó tam giác \(DEF\) tù                

c) Áp dụng định lí tổng ba góc của một tam giác vào tam giác \(HKI\) ta đươc:      

$$\eqalign{
& \widehat H + \widehat K + \widehat I = {180^0} \cr
& \Rightarrow \widehat H = {180^0} - \widehat K - \widehat I \cr&\;\;\;\;\;\;\;\;\;\,= {180^0} - {38^0} - {62^0} = {82^0} \cr} $$

Do đó tam giác \(HIK\) nhọn.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK