Bài tập 2 trang 55 SGK Giải tích 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 2 trang 55 SGK Giải tích 12

Cho a, b là những số thực dương. Viết các biểu thức dưới dạng lũy thừa với số mũ hữu tỉ: 

a) \(a^{\frac{1}{3}}.\sqrt{a}\).

b) \(b^{\frac{1}{2}}.b ^{\frac{1}{3}}. \sqrt[6]{b}\).

c) \(a^{\frac{4}{3}}:\sqrt[3]{a}\).

d) \(\sqrt[3]{b}: b^{\frac{1}{6}}\).

Nhận xét:

Đây là bài tập rèn luyện kĩ năng sử tính chất của lũy thừa, các em cần rèn luyện để ghi nhớ và biết cách sử dụng các tính chất để phục vụ cho việc giải các dạng toán khác sau này.

Lời giải:

Dưới đây là lời giải chi tiết các câu a, b, c, d bài 2:

Câu a:

\({a^{\frac{1}{3}}}.\sqrt a = {a^{\frac{1}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{1}{3} + \frac{1}{2}}} = {a^{\frac{5}{6}}}.\)

Câu b:

\({b^{\frac{1}{2}}}.{b^{\frac{1}{3}}}.\sqrt[6]{b} = {b^{\frac{1}{2}}}.{b^{\frac{1}{3}}}.{b^{\frac{1}{6}}} = {b^{\frac{1}{2} + \frac{1}{3} + \frac{1}{6}}} = b.\)

Câu c:

\({a^{\frac{4}{3}}}:\sqrt[3]{a} = {a^{\frac{4}{3} - \frac{1}{3}}} = a.\)

Câu d:

\(\sqrt[3]{b}:{b^{\frac{1}{6}}} = {b^{\frac{1}{3} - \frac{1}{6}}} = {b^{\frac{1}{6}}}.\)

 

-- Mod Toán 12

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK