Trong các câu sau, câu nào là mệnh đề?
Câu nào là mệnh đề toán học?
Đâu là mệnh đề chứa biến trong các câu sau:
Tìm mệnh đề kéo theo của hai mệnh đề “x là số lẻ” và “x chia hết cho 2”.
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Tìm mệnh đề phủ định của mệnh đề: ∀x ∈ ℝ, x2 + 2x + 2 > 0?
Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?
Chọn phát biểu đúng về mệnh đề sau: ∀x ∈ ℕ, x2 < 0?
Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:
Chọn phát biểu sai trong các câu sau:
Trong định lí ta nói: P là điều kiện cần để có Q. Khi đó P là gì của định lí?
Mệnh đề P ⇒ Q sai khi nào?
Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều sai thì ta suy ra điều gì?
Trong các câu sau, câu nào là mệnh đề?
A. Đi ngủ đi!
B. Trung Quốc là nước đông dân nhất thế giới.
C. Bạn học trường nào?
D. Không được làm việc riêng trong giờ học.
Trong các câu sau, câu nào không phải là mệnh đề?
A. Buồn ngủ quá!;
B. Hình thoi có hai đường chéo vuông góc với nhau;
C. 8 là số chính phương;
D. Băng Cốc là thủ đô của Mianma.
Trong các câu sau, có bao nhiêu câu là mệnh đề?
a) Hãy đi nhanh lên!
b) Hà Nội là thủ đô của Việt Nam.
c) 4 + 5 + 7 = 15.
d) Năm 2018 là năm nhuận.
A. 4;
B. 3;
C. 1;
D. 2.
Câu nào sau đây không là mệnh đề?
A. x > 2;
B. 3 < 1;
C. 4 – 5 = 1;
D. Tam giác đều là tam giác có ba cạnh bằng nhau.
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
A. Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn;
B. Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn;
C. Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ;
D. Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.
Cho mệnh đề A: “\[\forall x \in \mathbb{R},{x^2} - x + 7 < 0\]”. Mệnh đề phủ định của A là:
A. \[\overline{A}:''\forall x\in \mathbb{R},{{x}^{2}}-x+7>0''\];
B. \[\overline{A}:''\forall x\in \mathbb{R},{{x}^{2}}-x+7>0''\];
C. \[\overline{A}:''\exists x\in \mathbb{R},\,{{x}^{2}}-x+7<0''\];
D. \[\overline{A}:''\exists \,x\in \mathbb{R},{{x}^{2}}-\text{ }x+7\ge 0''\].
Mệnh đề phủ định của mệnh đề là:
A. \(\exists x \in \mathbb{R},\,{x^2} + x + 5 \le 0\);
B. \[\forall x \in \mathbb{R},{x^2} + x + 5 \le 0\];
C. \[\exists \,x \in \mathbb{R},{x^2} + x + 5 < 0\];
D. \[\forall x \in \mathbb{R},\,{x^2} + x + 5 < 0\].
Với giá trị thực nào của x mệnh đề chứa biến P(x): “2x2 – 1 < 0” là mệnh đề đúng
A. 0;
B. 5;
C. 1;
D. \[\frac{4}{5}\].
Mệnh đề nào sau đây sai?
A. Tứ giác ABCD là hình chữ nhật \[ \Rightarrow \] tứ giác ABCD có ba góc vuông;
B. Tam giác ABC là tam giác đều \[ \Leftrightarrow \]\[\widehat {\rm{A}} = {60^0}\];
C. Tam giác ABC cân tại A \[ \Rightarrow \]AB = AC;
D. Tứ giác ABCD nội tiếp đường tròn tâm O \[ \Rightarrow \]OA = OB = OC = OD.
Mệnh đề nào sau đây đúng?
A. \[\forall x \in \mathbb{R},\,{x^2} - x + 1 > 0\];
B. \[\exists {\rm{n}} \in \mathbb{N},\,{\rm{n}} < 0\];
C. \[\exists {\rm{n}} \in \mathbb{Q},{n^2} = 2\];
D. \[\forall x \in \mathbb{Z},\frac{1}{x} > 0\].
Mệnh đề \[\forall x \in \mathbb{R},{x^2} - 2 + {\rm{a}} > 0\] với a là số thực cho trước. Tìm a để mệnh đề đúng
A. a ≥ 2;
B. a < 2;
C. a = 2;
D. a > 2.
Trong các mệnh đề sau đây, mệnh đề nào có mệnh đề đảo là đúng?
A. Nếu a và b cùng chia hết cho c thì a + b chia hết cho c;
B. Nếu hai tam giác bằng nhau thì diện tích bằng nhau;
C. Nếu a chia hết cho 3 thì a chia hết cho 9;
D. Nếu một số tận cùng bằng 0 thì số đó chia hết cho 5.
Trong các mệnh đề sau, mệnh đề nào sai?
A. – π2 < – 2 \( \Leftrightarrow \) π2 < 4;
B. π < 4 \( \Leftrightarrow \) π2 < 16;
C. \(\sqrt {23} < 5\,\, \Rightarrow \,\,2\sqrt {23} < 2.5\);
D. \(\sqrt {23} < 5\,\, \Rightarrow \,\, - 2\sqrt {23} > - 2.5\).
Cho mệnh đề chứa biến P(x): "x + 15 ≤ x2" với giá trị thực nào của x trong các giá trị sau P(x) là mệnh đề đúng
A. x = 0;
B. x = 3;
C. x = 4;
D. x = 5.
Cho hai số \({\rm{a}} = \sqrt {10} + 1\), \({\rm{b}} = \sqrt {10} - 1\). Hãy chọn khẳng định đúng
A. \(\left( {{{\rm{a}}^2} + {{\rm{b}}^2}} \right) \in \mathbb{N}\);
B. \(\left( {{\rm{a}} + {\rm{b}}} \right) \in \mathbb{Q}\);
C. a2 + b2 = 20;
D. a.b = 99.
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK