Cho ΔABC cân tại A, AB = AC = 5 cm; BC = 8 cm. Kẻ AH\[ \bot \]BC (H\( \in \)BC).
a) Chứng minh HB = HC.
b) Tính AH.
c) Kẻ HD\[ \bot \]AB (D\( \in \)AB); HE\[ \bot \]AC (E\( \in \)AC). Chứng minh: ΔHDE là tam giác cân.
GT |
ΔABC cân tại A, AB = AC = 5 cm; BC = 8 cm. AH\[ \bot \]BC (H\( \in \)BC); HD\[ \bot \]AB (D\( \in \)AB); HE\[ \bot \]AC (E\( \in \)AC). |
KL |
a) Chứng minh HB = HC. b) Tính AH. c) ΔHDE là tam giác cân. |
a) Xét ∆ABH và ∆ACH có:
\(\widehat {AHB} = \widehat {AHC} = {90^o}\)
AB = AC = 5 cm
Cạnh AH chung
Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông)
Suy ra BH = CH (hai cạnh tương ứng)
b) Từ câu a: BH = CH suy ra \(BH = \frac{{BC}}{2} = \frac{8}{2} = 4\,\,(cm)\).
Áp dụng định lý Py-ta-go vào ∆AHB vuông tại H, ta có:
AB2 = AH2 + BH2
\( \Rightarrow \) AH2 = AB2 − BH2 = 52 − 42 = 25 – 16 = 9.
Do đó \(AH = \sqrt 9 = 3\,\,(cm)\)
c) Xét ∆DBH và ∆ECH có:
\(\widehat B = \widehat C\) (vì ∆ABC cân tại A)
BH = CH (cmt)
\(\widehat {BDH} = \widehat {HEC} = {90^o}\)
Do đó ∆ABH = ∆ACH (cạnh huyền – góc nhọn)
Suy ra DH = EH (hai cạnh tương ứng).
Vậy ∆DHE cân tại H.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK