Từ định nghĩa trên, dễ thấy các tỉ số lượng giác của một góc nhọn luôn luôn dương. Hơn nữa ta có: \(sin\alpha < 1, cos\alpha <1\)
Nếu hai góc nhọn \(\alpha\) và \(\beta\) có \(sin\alpha =sin\beta\) ( hoặc \(cos\alpha =cos\beta , tan\alpha =tan\beta ,cotg \alpha =cotg\beta\) ) thì \(\alpha =\beta\) vì chúng là hai góc tương ứng của hai tam giác vuông đồng dạng
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia
Cụ thể trong hình trên với \(\alpha\) và \(\beta\) là hai góc phụ nhau nên: \(sin\alpha =cos\beta , cos\alpha =sin\beta, tan \alpha =cotg\beta , cotg\alpha =tan\beta\)
Từ nay khi viết các tỉ số lượng giác của một góc nhọn trong tam giác, ta bỏ kí hiệu "^". Chẳng hạn viết \(sinA\) thay vì viết \(sin\widehat{A}\)
Từ định nghĩa các tỉ số lượng giác của một góc nhọn ta có: \(tan\alpha =\frac{sin\alpha }{cos\alpha }; cotg\alpha =\frac{cos\alpha }{sin\alpha }\)
và \(tan\alpha .cotg\alpha =1 , sin^2\alpha +cos^2\alpha =1\); \(1+tan^2\alpha =\frac{1}{cos^2\alpha }; 1+cot^2\alpha =\frac{1}{sin^2\alpha }\)
(các công thức trên có thể chứng minh dễ dàng)
Bài 1: Cho tam giác ABC vuông tại A, có AB=6, BC=10. Tính sinB và cosB
Hướng dẫn: Ta có: \(cosB=\frac{AB}{BC}=\frac{6}{10}=0.6 ;AC=\sqrt{BC^2-AB^2}=8 \Rightarrow sinB=\frac{AC}{BC}=0.8\)
Bài 2: Chuyển các tỉ số lượng giác sau thành các tỉ số lượng giác của các góc nhỏ hơn \(45^{\circ}\) : \(sin72^{\circ};cos50^{\circ}; tan68^{\circ}; cotg88^{\circ}\)
Hướng dẫn: Ta có: \(sin72^{\circ}=cos18^{\circ};cos50^{\circ}=sin40^{\circ}; tan68^{\circ}=cotg22^{\circ}; cotg88^{\circ}=tan2^{\circ}\)
Bài 3: Cho tam giác ABC. Biết cosB=0,6. Tính các tỉ số lượng giác góc C
Hướng dẫn: Ta có: \(sinC=cosB=0.6\) và \(cosC=sinB=\sqrt{1-cos^2B}=0.8\)
\(tanC=\frac{sinC}{cosC}=\frac{0.6}{0.8}=\frac{3}{4}\) và \(cotC=\frac{cosC}{sinC}=\frac{0.8}{0.6}=\frac{4}{3}\)
Bài 1:
a) Rút gọn biểu thức: \(S=cos^2\alpha +tan^2\alpha .cos^2\alpha\)
b) chứng minh: \(\frac{(sin\alpha +cos\alpha )^2-(sin\alpha -cos\alpha )^2}{sin\alpha .cos\alpha }=4\)
Hướng dẫn:
a) \(S=cos^2\alpha +tan^2\alpha .cos^2\alpha=cos^2\alpha+\frac{sin^2\alpha }{cos^2\alpha }.cos^2\alpha =sin^2\alpha +cos^2\alpha =1\)
b) \(VT=\frac{(1+2.sin\alpha .cos\alpha )-(1-2.sin\alpha .cos\alpha )}{sin\alpha.cos\alpha }=\frac{4.sin\alpha .cos\alpha }{sin\alpha .cos\alpha }=4\)
( Áp dụng: \(sin^2\alpha +cos^2\alpha =1\) )
Bài 2: Cho tam giác ABC nhọn. Gọi a, b, c lần lượt là độ dài các cạnh đối diện với các đỉnh A, B, C. Chứng minh: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Hướng dẫn:Kẻ AH vuông góc với BC ( \(H\in BC\) )
Khi đó: \(sinB=\frac{AH}{c}\Rightarrow sinB.c=AH\) và \(sinC=\frac{AH}{b}\Rightarrow sinC.b=AH\)
từ đó ta có: \(sinB.c=sinC.b\Rightarrow \frac{b}{sinB}=\frac{c}{sinC}\) .
Tương tự kẻ đường cao BD ( \(D\in AC\) ) sẽ chứng minh được: \(\frac{a}{sinA}=\frac{b}{sinB} \Rightarrow \frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
3. Luyện tập Bài 2 Chương 1 Hình học 9
Qua bài giảng Tỷ số lượng giác của góc nhọn này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 9 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Rút gọn biểu thức sau: \(T=(1+cos\alpha )(1-cos\alpha )-tan^2\alpha +sin^2\alpha .tan^2\alpha\)
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 9 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 1
Bài tập 2.11 trang 110 SBT Toán 9 Tập 1
Bài tập 2.12 trang 110 SBT Toán 9 Tập 1
Bài tập 2.13 trang 110 SBT Toán 9 Tập 1
Bài tập 2.14 trang 110 SBT Toán 9 Tập 1
Bài tập 2.15 trang 110 SBT Toán 9 Tập 1
Bài tập 2.16 trang 110 SBT Toán 9 Tập 1
Bài tập 2.17 trang 110 SBT Toán 9 Tập 1
Bài tập 2.18 trang 110 SBT Toán 9 Tập 1
Bài tập 2.19 trang 110 SBT Toán 9 Tập 1
Bài tập 2.20 trang 110 SBT Toán 9 Tập 1
Bài tập 2.21 trang 111 SBT Toán 9 Tập 1
Bài tập 2.22 trang 111 SBT Toán 9 Tập 1
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK