Trong một tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền.
Tam giác ABC vuông tại A (hình 1), ta có:
\(b^2=a.b'\) , \(c^2=a.c'\), cách chứng minh định lý này khá đơn giản dựa vào 2 tam giác vuông đồng dạng là BAC và AHC.
Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền.
Cụ thể ở hình 1, ta có: \(h^2=b'.c'\)
Trong một tam giác vuông, tích hai cạnh góc vuông bằng tích của cạnh huyền và đường cao tương ứng.
Cụ thể ở hình 1, ta có: \(b.c=a.h\)
Trong một tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông.
Cụ thể ở hình 1, ta có: \(\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}\) hay \(h=\frac{b.c}{\sqrt{b^2+c^2}}\)
Bài 1: Tính: \(x, y\)
Hướng dẫn:Áp dụng định lý 1 ta có: \(x^2=3,6.(3,6+6,4)=3,6.10=36\Rightarrow x=6\)
tương tự: \(y^2=6,4.(3,6+6,4)=6,4.10=64\Rightarrow y=8\)
Bài 2: Tính: \(x,y\)
Hướng dẫn: Áp dụng định lý số 2, ta có: \(4^2=2.y\Rightarrow y=8\).
Áp dụng định lý 1, ta có: \(x^2=2.(2+8)=2.10=20\Rightarrow x=2\sqrt{5}\)
Bài 3: Tính: \(x,y\)
Hướng dẫn: Áp dụng định lý 4, ta có: \(\frac{1}{x^2}=\frac{1}{b^2}+\frac{1}{c^2}\Rightarrow x=\frac{b.c}{\sqrt{b^2+c^2}}=\frac{3.4}{\sqrt{3^2+4^2}}=\frac{12}{5}\)
Áp dụng định lý 3, ta có: \(x.y=3.4\Rightarrow y=\frac{3.4}{x}=\frac{12}{\frac{12}{5}}=5\)
(có thể tính \(y\) trước bằng định lý pi-ta-go sau đó tính \(x\))
Bài 1: cho tam giác ABC vuông tại A, đường cao AH. Biết AB:AC = 3:4 và AH=12. Tính chu vi tam giác ABC
Hướng dẫn: Đặt: \(AB=3k, AC=4k\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{9k^2+16k^2}=5k\)
Áp dụng định lý 3, ta có: \(AB.AC=BC.AH\Leftrightarrow 3k.4k=5k.12\Rightarrow k=5\)
\(\Rightarrow AB=15; AC=20; BC=25\) và \(P=60\)
Bài 2: Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB, HC lần lượt lấy M, N sao cho \(\widehat{AMC}=\widehat{ANB}=90^{\circ}\)
CMR: \(AM=AN\)
Hướng dẫn: Xét 2 tam giác ABD và ACE là hai tam giác vuông có chung góc A nên \(\Delta ABD\sim \Delta ACE\) (g.g) \(\Rightarrow \frac{AB}{AD}=\frac{AC}{AE}\Rightarrow AD.AC=AE.AB\) (1)
\(\Delta ANB\) vuông tại N có NE là đường cao nên: \(AN^2=AE.AB\) (2)
\(\Delta AMC\) vuông tại M có MD là đường cao nên: \(AM^2=AD.AC\) (3)
Từ (1), (2) và (3) suy ra: \(AM^2=AN^2\Rightarrow AM=AN\)
3. Luyện tập Bài 1 Chương 1 Hình học 9
Qua bài giảng Một số hệ thức về cạnh và đường cao trong tam giác vuông này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 9 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 1: Cho tam giác ABC vuông tại A có AB = 6, BC=10. AH là đường cao. Độ dài BH và AH lần lượt là:
Câu 2: Cho tam giác ABC vuông tại A, có đường cao AH. Biết BH=9, CH=7. Độ dài AB và AC lần lượt là
Bài 4: Cho tam giác ABC vuông tại A có đường cao AH=12, Biết BH-CH=7. Độ dài cạnh BC là bao nhiêu
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 9 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 1
Bài tập 19 trang 105 SBT Toán 9 Tập 1
Bài tập 20 trang 105 SBT Toán 9 Tập 1
Bài tập 1.1 trang 105 SBT Toán 9 Tập 1
Bài tập 1.2 trang 105 SBT Toán 9 Tập 1
Bài tập 1.3 trang 105 SBT Toán 9 Tập 1
Bài tập 1.4 trang 105 SBT Toán 9 Tập 1
Bài tập 1.5 trang 105 SBT Toán 9 Tập 1
Bài tập 1.6 trang 106 SBT Toán 9 Tập 1
Bài tập 1.7 trang 106 SBT Toán 9 Tập 1
Bài tập 1.8 trang 106 SBT Toán 9 Tập 1
Bài tập 1.9 trang 106 SBT Toán 9 Tập 1
Bài tập 1.10 trang 106 SBT Toán 9 Tập 1
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK