Ta có thể biến đổi một biểu thức hữu tỉ thành một phân thức nhờ các quy tắc của các phép cộng trừ, nhân, chia phân thức.
Trước khi làm bài toán liên quan đến giá trị phân thức cần tìm điều kiện của biến để giá trị tương ứng của mẫu thức khác 0, từ đó giá trị của phân thức mới được xác định.
Bài 1: Biến đổi các biểu thức sau thành phân thức:
a.\(1 - \frac{x}{{1 - \frac{x}{{x + 1}}}}\)
b.\(\frac{{1 - \frac{2}{{x + 1}}}}{{1 - \frac{{{x^2} - 2}}{{{x^2} - 1}}}}\)
Hướng dẫn
a.
\(\begin{array}{l} 1 - \frac{x}{{1 - \frac{x}{{x + 1}}}}\\ = 1 - \left[ {x:\left( {1 - \frac{x}{{x + 1}}} \right)} \right]\\ = 1 - \left[ {x:\left( {\frac{{x + 1}}{{x + 1}} - \frac{x}{{x + 1}}} \right)} \right]\\ = 1 - \left[ {x:\frac{1}{{x + 1}}} \right]\\ = 1 - x\left( {x + 1)} \right) \end{array}\)
b.
\(\begin{array}{l} \frac{{1 - \frac{2}{{x + 1}}}}{{1 - \frac{{{x^2} - 2}}{{{x^2} - 1}}}}\\ = \left( {1 - \frac{2}{{x + 1}}} \right):\left( {1 - \frac{{{x^2} - 2}}{{{x^2} - 1}}} \right)\\ = \left( {\frac{{x + 1}}{{x + 1}} - \frac{2}{{x + 1}}} \right):\left( {\frac{{{x^2} - 1}}{{{x^2} - 1}} - \frac{{{x^2} - 2}}{{{x^2} - 1}}} \right)\\ = \left( {\frac{{x + 1 - 2}}{{x + 1}}} \right):\left( {\frac{{{x^2} - 1 - {x^2} + 2}}{{{x^2} - 1}}} \right)\\ = \frac{{x - 1}}{{x + 1}}:\frac{1}{{{x^2} - 1}}\\ = \frac{{x - 1}}{{x + 1}}.\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^2} \end{array}\)
Bài 2: Tìm điều kiện xác định của các phân thức sau:
a. \(\frac{{4x}}{{3x - 6}}\)
b. \(\frac{5}{{{x^2} - 2x}}\)
c.\(\frac{{5x + y}}{{{x^2} - 4{y^2}}}\)
Hướng dẫn
a.
\(\frac{{4x}}{{3x - 6}}\)
ĐKXĐ:
\(\begin{array}{l} 3x - 6 \ne 0\\ \Rightarrow x \ne 2 \end{array}\)
b.
\(\frac{5}{{{x^2} - 2x}}\)
ĐKXĐ:
\(\begin{array}{l} {x^2} - 2x \ne 0{\rm{ }}\\ \Leftrightarrow x\left( {x - 2} \right) \ne 0\\ \Leftrightarrow x \ne 0;2 \end{array}\)
c.
\(\frac{{5x + y}}{{{x^2} - 4{y^2}}}\)
ĐKXĐ:
\(\begin{array}{l} {x^2} - 4{y^2} \ne 0{\rm{ }}\\ \Leftrightarrow \left( {x - 2y} \right)\left( {x + 2y} \right) \ne 0\\ \Leftrightarrow x \ne \pm 2y \end{array}\)
Bài 3: Tính giá trị biểu thức A tại x=-8
\(A = \frac{{3{x^2} - x}}{{9{x^2} - 6x + 1}}\)
Hướng dẫn
Ta có:
\(\begin{array}{l} A = \frac{{3{x^2} - x}}{{9{x^2} - 6x + 1}}\\ {\rm{ }} = \frac{{x\left( {3x - 1} \right)}}{{{{\left( {3x - 1} \right)}^2}}} \end{array}\)
ĐKXĐ:
\(x \ne \frac{1}{3}\)
Tại \(x = - 8\) ta có:
\(\begin{array}{l} \frac{x}{{3x - 1}}\\ = \frac{{ - 8}}{{3.\left( { - 8} \right) - 1}}\\ = \frac{8}{{25}} \end{array}\)
Qua bài giảng Biến đổi các biểu thức hữu tỉ và Giá trị của phân thức này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 8 Bài 9 cực hay có đáp án và lời giải chi tiết.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 8 Bài 9 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 46 trang 57 SGK Toán 8 Tập 1
Bài tập 47 trang 57 SGK Toán 8 Tập 1
Bài tập 48 trang 58 SGK Toán 8 Tập 1
Bài tập 49 trang 58 SGK Toán 8 Tập 1
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK