Muốn rút gọn phân thức ta có thể:
( Việc phân tích đa thức thành nhân tử đã được học ở chương I, các em có thể xem lại các bài học ở chương I để nắm lại kiến thức.)
Bài 1: Rút gọn phân thức:
a. \(\frac{{12{x^3}y}}{{9{x^2}{y^4}}}\)
b. \(\frac{{4{x^3} + 20x}}{{{x^2} + 5}}\)
c. \(\frac{{14x{y^5}\left( {2x - 3y} \right)}}{{21{x^2}y{{\left( {2x - 3y} \right)}^2}}}\)
Hướng dẫn:
a.
\(\begin{array}{l} \frac{{12{x^3}y}}{{9{x^2}{y^4}}}\\ = \frac{{4x}}{{{y^3}}} \end{array}\)
b.
\(\begin{array}{l} \frac{{4{x^3} + 20x}}{{{x^2} + 5}}\\ = \frac{{4x\left( {{x^2} + 5} \right)}}{{{x^2} + 5}}\\ = 4x \end{array}\)
c.
\(\begin{array}{l} \frac{{14x{y^5}\left( {2x - 3y} \right)}}{{21{x^2}y{{\left( {2x - 3y} \right)}^2}}}\\ = \frac{{2{y^4}}}{{3x\left( {2x - 3y} \right)}} \end{array}\)
Bài 2: Rút gọn phân thức bằng cách đổi dấu hạng tử:
a. \(\frac{{12{x^2} - 8x}}{{40 - 60x}}\)
b. \(\frac{{8xy{{\left( {3x - 1} \right)}^2}}}{{12{x^3}\left( {1 - 3x} \right)}}\)
c. \(\frac{{\left( {{x^2} - xy} \right){{\left( {2x - 1} \right)}^3}}}{{\left( {5{y^2} - 5xy} \right){{\left( {1 - 2x} \right)}^2}}}\)
Hướng dẫn:
a.
\(\begin{array}{l} \frac{{12{x^2} - 8x}}{{40 - 60x}}\\ = \frac{{4x(3x - 2)}}{{ - 20\left( {3x - 2} \right)}}\\ = \frac{x}{{ - 5}}\\ = \frac{{ - x}}{5} \end{array}\)
b.
\(\begin{array}{l} \frac{{8xy{{\left( {3x - 1} \right)}^2}}}{{12{x^3}\left( {1 - 3x} \right)}}\\ = \frac{{2y{{\left( {1 - 3x} \right)}^2}}}{{3{x^2}(1 - 3x)}}\\ = \frac{{2y\left( {1 - 3x} \right)}}{{3{x^2}}} \end{array}\)
c.
\(\begin{array}{l} \frac{{\left( {{x^2} - xy} \right){{\left( {2x - 1} \right)}^3}}}{{\left( {5{y^2} - 5xy} \right){{\left( {1 - 2x} \right)}^2}}}\\ = \frac{{x\left( {x - y} \right){{\left( {2x - 1} \right)}^3}}}{{ - 5y\left( {x - y} \right){{\left( {2x - 1} \right)}^2}}}\\ = \frac{{x\left( {2x - 1} \right)}}{{ - 5y}}\\ = \frac{{x\left( {1 - 2x} \right)}}{{5y}} \end{array}\)
Bài 3: Rút gọn phân thức A bằng cách phân tích tử và mẫu thành nhân tử:
\(A = \frac{{8{x^2} - 8x + 2}}{{\left( {4x - 2} \right)\left( {15 - x} \right)}}\)
Hướng dẫn:
Ta có:
\(\begin{array}{l} A = \frac{{8{x^2} - 8x + 2}}{{\left( {4x - 2} \right)\left( {15 - x} \right)}}\\ = \frac{{2\left( {4{x^2} - 4x + 1} \right)}}{{2\left( {2x - 1} \right)\left( {15 - x} \right)}}{\rm{ }}\\ = \frac{{2{{\left( {2x - 1} \right)}^2}}}{{2\left( {2x - 1} \right)\left( {15 - x} \right)}}\\ = \frac{{2x - 1}}{{15 - x}}\\ \end{array}\)
Qua bài giảng Rút gọn phân thức này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 8 Bài 3 cực hay có đáp án và lời giải chi tiết.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 8 Bài 3 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 7 trang 39 SGK Toán 8 Tập 1
Bài tập 8 trang 40 SGK Toán 8 Tập 1
Bài tập 9 trang 40 SGK Toán 8 Tập 1
Bài tập 10 trang 40 SGK Toán 8 Tập 1
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK