Bài 8 trang 81 SGK Hình học 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Xác định giá trị của \(m\) và \(n\) để mỗi cặp mặt phẳng sau đây là một cặp mặt phẳng song song với nhau:

a) \(2x + my + 3z - 5 = 0\) và \(nx - 8y - 6z + 2 = 0\);

b) \(3x - 5y + mz - 3 = 0\) và \(2x + ny - 3z + 1 = 0\);

Hướng dẫn giải

Cho hai mặt phẳng: \((\alpha): a_1x+b_1y+c_1z+d_1=0\) và \((\beta): a_2x+b_2y+c_2z+d_2=0\).

Khi đó \(\left( \alpha \right)//\left( \beta \right) \Leftrightarrow \left\{ \begin{array}{l}\left( {{a_1};\;{b_1};\;{c_1}} \right) = k\left( {{a_2};\;{b_2};\;{c_2}} \right)\\{d_1} \ne k{d_2}\end{array} \right.\) hay \(\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}} \ne \frac{{{d_1}}}{{{d_2}}}.\)

Lời giải chi tiết

Hai mặt phẳng  \(2x + my + 3z - 5 = 0\)  và \(nx - 8y - 6z + 2 = 0\) song song với nhau khi và chỉ khi:

\(\frac{2}{n}=\frac{m}{-8}=\frac{3}{-6}\neq \frac{-5}{2}  \Leftrightarrow \left\{ \begin{array}{l}3n = - 12\\- 6m = - 24\end{array} \right.⇔ \left\{\begin{matrix} n= -4 & \\ m=4& \end{matrix}\right.\).

b) Hai mặt phẳng \(3x - 5y + mz - 3 = 0\) và \(2x + ny - 3z + 1 = 0\)  khi và chỉ khi :

\(\frac{3}{2}=-\frac{5}{n}=\frac{m}{-3}\neq -\frac{3}{1} \Leftrightarrow \left\{ \begin{array}{l}3n = - 10\\2m = - 9\end{array} \right.⇔ \left\{\begin{matrix} n=-\frac{10}{3} & \\ m=-\frac{9}{2} & \end{matrix}\right..\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK