a) Lập phương trình của các mặt phẳng tọa độ \((Oxy), (Oyz), (Ozx)\).
b) Lập phương trình của các mặt phẳng đi qua điểm \(M(2 ; 6 ; -3)\) và lần lượt song song với các mặt phẳng tọa độ.
a) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT \(\overrightarrow n = \left( {a;\;b;\;c} \right)\) có dạng: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)
b) Cho hai mặt phẳng: \(\left( P \right)//\left( Q \right)\) thì \(\overrightarrow {{n_P}} = \overrightarrow {{n_Q}} .\)
Sau đó dựa vào công thức để lập phương trình mặt phẳng cần lập.
Lời giải chi tiết
a) Mặt phẳng \((Oxy)\) qua điểm \(O(0 ; 0 ; 0)\) và có vectơ pháp tuyến \(\overrightarrow{k}(0 ; 0 ; 1)\) và là vectơ chỉ phương của trục \(Oz\). Phương trình mặt phẳng \((Oxy)\) có dạng:
\( 0.(x - 0) +0.(y - 0) +1.(z - 0) = 0\) hay \(z = 0\).
Tương tự phương trình mặt phẳng \((Oyz)\) là : \(x = 0\) và phương trình mặt phẳng \((Ozx)\) là: \(y = 0\).
b) Mặt phẳng \((P)\) qua điểm \(M(2; 6; -3)\) song song với mặt phẳng \(Oxy\) nhận \(\overrightarrow{k}(0 ; 0 ; 1)\) làm vectơ pháp tuyến. Phương trình mặt phẳng \((P)\) có dạng: \(z +3 = 0\).
Tương tự mặt phẳng \((Q)\) qua \(M\) và song song với mặt phẳng \(Oyz\) có phương trình \(x - 2 = 0\).
Mặt phẳng qua \(M\) song song với mặt phẳng \(Oxz\) có phương trình \(y - 6 = 0\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK