Cho tứ diện có các đỉnh là \(A(5 ; 1 ; 3), B(1 ; 6 ; 2), C(5 ; 0 ; 4), D(4 ; 0 ; 6).\)
a) Hãy viết các phương trình mặt phẳng \((ACD)\) và \((BCD)\)
b) Hãy viết phương trình mặt phẳng \((α)\) đi qua cạnh \(AB\) và song song với cạnh \(CD\).
a) Mặt phẳng \((P)\) đi qua \(3\) điểm \(A, \, \, B\) và \(C\) có VTPT: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right].\)
+) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT \(\overrightarrow n = \left( {a;\;b;\;c} \right)\) có dạng: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)
b) Mặt phẳng \((P)\) song song với các đường thẳng có giá là các vecto \(\overrightarrow u ;\;\;\overrightarrow v \Rightarrow \) VTPT của \((P)\) là: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\)
Sau đó áp dụng công thức như câu a để lập phương trình mặt phẳng.
Lời giải chi tiết
a) Mặt phẳng \((ADC)\) đi qua \(A(5 ; 1 ; 3)\) và chứa giá của các vectơ \(\overrightarrow{AC}(0 ; -1 ; 1)\) và \(\overrightarrow{AD}(-1 ; -1 ; 3)\).
Khi đó VTPT của mặt phẳng \((ADC)\) là: \(\overrightarrow{n}=\left [\overrightarrow{AC},\overrightarrow{AD} \right ]\) \( = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&3\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\{ - 1}&{ - 1}\end{array}} \right|} \right)= (-2 ; -1 ; -1).\)
Phương trình \((ACD)\) có dạng:
\(2(x - 5) + (y - 1) + (z - 3) = 0\).
hay \(2x + y + z - 14 = 0\).
Tương tự: Mặt phẳng \((BCD)\) qua điểm \(B(1 ; 6 ; 2)\) và nhận vectơ \(\overrightarrow{m}=\left [\overrightarrow{BC},\overrightarrow{BD} \right ]\) làm vectơ pháp tuyến.
Ta có :\(\overrightarrow{BC}(4 ; -6 ; 2)\), \(\overrightarrow{BD}(3 ; -6 ; 4)\) và
\(\overrightarrow{m}=\left (\begin{vmatrix} -6 & 2\\ -6 & 4 \end{vmatrix}; \begin{vmatrix} 2 &4 \\ 4& 3 \end{vmatrix};\begin{vmatrix} 4 & -6\\ 3& -6 \end{vmatrix} \right )\)
\(= (-12 ; -10 ; -6)=-2(6; 5; 3).\)
Xét \(\overrightarrow{m_{1}} (6 ; 5 ; 3)\) thì \(\overrightarrow{m}=-2\overrightarrow{m_{1}}\) nên \(\overrightarrow{m_{1}}\) cũng là vectơ pháp tuyến của mặt phẳng \((BCD)\). Phương trình mặt phẳng \((BCD)\) có dạng:
\(6(x - 1) + 5(y - 6) +3(z - 2) = 0\)
hay \(6x + 5y + 3z - 42 = 0\).
b) Mặt phẳng \(( α )\) qua cạnh \(AB\) và song song với \(CD\) thì \(( α )\) qua \(A\) và nhận \(\overrightarrow{AB} (-4 ; 5 ; -1)\) , \(\overrightarrow{CD}(-1 ; 0 ; 2)\) làm vectơ chỉ phương.
VTPT của mặt phẳng \((α): \overrightarrow{n}=\left [\overrightarrow{AB},\overrightarrow{CD} \right ] \) \(= \left( {\left| {\begin{array}{*{20}{c}}5&{ - 1}\\0&2\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 4}\\2&{ - 1}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 4}&5\\{ - 1}&0\end{array}} \right|} \right)= (10 ; 9 ; 5).\)
Phương trình mặt phẳng \(( α )\) có dạng : \(10x + 9y + 5z - 74 = 0\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK