Viết phương trình mặt phẳng:
a) Đi qua điểm \(M(1; -2; 4)\) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến.
b) Đi qua điểm \(A(0 ; -1 ; 2)\) và song song với giá của các vectơ \(\overrightarrow{u}(3; 2; 1)\) và \(\overrightarrow{v}(-3; 0; 1)\).
c) Đi qua ba điểm \(A(-3 ; 0 ; 0), B(0 ; -2 ; 0)\) và \(C(0 ; 0 ; -1)\).
a) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT \(\overrightarrow n = \left( {a;\;b;\;c} \right)\) có dạng: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)
b) Mặt phẳng \((P)\) song song với các vecto \(\overrightarrow u ;\;\;\overrightarrow v \Rightarrow \) VTPT của \((P)\) là: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\)
Sau đó áp dụng công thức như câu a để lập phương trình mặt phẳng.
c) Mặt phẳng \((P)\) đi qua \(3\) điểm \(A, \, \, B\) và \(C\) có VTPT: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right].\)
Khi đó áp dụng công thức như câu a để lập phương trình mặt phẳng.
Lời giải chi tiết
a) Mặt phẳng \((P)\) đi qua điểm \(M(1; -2; 4)\) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến có phương trình:
\((P) :2(x - 1) + 3(x +2) + 5(z - 4) = 0\) \(⇔ 2x + 3y + 5z -16 = 0\).
b) Gọi \((Q)\) là mặt phẳng cần lập. Theo đề bài ta có: \((Q)\) song song với \(\overrightarrow u ;\;\;\overrightarrow v.\)
Khi đó ta có VTPT của \((Q)\) là: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\) \( \Rightarrow \overrightarrow {{n_Q}} = \left( {\left| {\begin{array}{*{20}{c}}2&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\1&{ - 3}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}3&2\\{ - 3}&0\end{array}} \right|} \right) \\= \left( {2;\; - 6;\;6} \right) = 2\left( {1; - 3;\;3} \right).\)
Phương trình mặt phẳng \((Q)\) có dạng:
\((Q) :x - 0 - 3(y + 1) + 3(z - 2) = 0\)
\( ⇔ x - 3y + 3z - 9 = 0\)
c) Gọi \(R)\) là mặt phẳng qua \(A, \, B, \, C\) khi đó \(\overrightarrow{AB}\), \(\overrightarrow{AC}\) là cặp vectơ chỉ phương của \((R)\).
Ta có: \( \overrightarrow{AB} = (3;-2;0)\) và \(\overrightarrow{AC}= (3;\, 0; \, -1).\)
Khi đó: \(\overrightarrow{n_R}=\left [\overrightarrow{AB},\overrightarrow{AC} \right ] \) \(= \left( \begin{vmatrix} -2 &0 \\ 0 & -1 \end{vmatrix};\begin{vmatrix} 0 & 3\\ -1& 3 \end{vmatrix}; \begin{vmatrix} 3 & -2\\ 3& 0 \end{vmatrix} \right)\\ = (2 ; 3 ; 6).\)
Vậy phương trình mặt phẳng \((R)\) có dạng: \(2x + 3y + 6(z+1)=0 \)
\( \Leftrightarrow 2x + 3y +6z + 6 = 0.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK