Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình bình hành \(ABCD\). Gọi \(Bx, Cy, Dz\) là các nửa đường thẳng song song với nhau lần lượt đi qua \(B, C, D\) và nằm về một phía của mặt phẳng \((ABCD)\) đồng thời không nằm trong mặt phẳng \((ABCD)\). Một mặt phẳng đi qua \(A\) và cắt \(Bx, Cy, Dz\) lần lượt tại \(B', C', D'\) với \(BB'=2, DD'=4\). Khi đó \(CC'\) bằng:

(A) 3               (B) 4                (C) 5                (D) 6

Hướng dẫn giải

Sử dụng kết quả của định lí: Cho hai mặt phẳng song song, nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau để chứng minh \(AB'C'D'\) là hình bình hành.

Gọi \(O,O'\) lần lượt là tâm của hình bình hành \(ABCD ,AB'C'D'\), dựa vào tính chất đường trung bình của hình thang và đường trung bình của tam giác để tính độ dài \(CC'\).

Lời giải chi tiết

Ta có: 

\(\begin{array}{l}\left\{ \begin{array}{l}BC//AD\\Bx//Dz\end{array} \right. \Rightarrow \left( {Bx;Cy} \right)//\left( {AD;Dz} \right)\\\left\{ \begin{array}{l}\left( {A'B'C'D'} \right) \cap \left( {Bx;Cy} \right) = B'C'\\\left( {A'B'C'D'} \right) \cap \left( {AD;Dz} \right) = AD'\\\left( {Bx;Cy} \right)//\left( {AD;Dz} \right)\end{array} \right. \Rightarrow AD'//B'C'\end{array}\).

Chứng minh tương tự ta có \(AB'//C'D'\). Do đó \(AB'C'D'\) là hình bình hành.

Gọi \(O,O'\) lần lượt là tâm của hình bình hành \(ABCD ,AB'C'D'\) ta có \(OO'\) là đường trung bình của hình thang \(BDD'B'\) nên \(BB'+DD'=2OO'\)    (1).

\(OO'\) là đường trung bình của tam giác \(ACC'\) nên \(CC'=2OO'\)     (2).

Từ (1) và (2) suy ra \(BB'+DD'=CC' \Rightarrow CC'=2+4=6\)

Chọn đáp án D.

logiaihay.com

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK