Cho hai hình thang \(ABCD\) và \(ABEF\) có chung đáy lớn \(AB\) và không cùng nằm trong một mặt phẳng.
a) Tìm giao tuyến của các mặt phắng sau: \((AEC)\) và \((BFD)\), \((BCE)\) và \((ADF)\).
b) Lấy \(M\) là điểm thuộc \(DF\). Tìm giao điểm của đường thẳng \(AM\) với mặt phẳng \((BCE)\).
c) Chứng minh hai đường thẳng \(AC\) và \(BF\) không cắt nhau.
a) Tìm hai điểm chung của các mặt phẳng.
b) Tìm điểm chung của \(AM\) với mặt phẳng \((BCE)\).
c) Sử dụng phương pháp phản chứng: Giả sử AC và BF đồng phẳng.
Lời giải chi tiết
a) Trong \((ABCD)\) : Gọi \(I=AC ∩ BD \), Trong \(( ABEF)\): Gọi \(J=AE ∩ BF \)
\(\Rightarrow (ACE) ∩ (BDF) = IJ\).
Tương tự \((BCE) ∩ ( ADF) = GH\)
b) Trong \((AGH)\): Gọi \(N=AM ∩ GH\), \(N \in AM\) và \(N \in GH\subset (BCE)\)
Do đó: \(N=AM\cap(BCE)\)
c) Chứng minh bằng phương pháp phản chứng.
Giả sử \(AC\) và \(BF\) cùng nằm trong một mặt phẳng, lập luận dẫn tới \((ABCD) ≡ (ABEF)\) hay chúng cùng nằm trong một mặt phẳng (trái với giả thiết).
Do đó: \(AC\) và \(BF\) không cắt nhau.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK