Lý thuyết Bài tập

Tóm tắt bài

Đề bài

a) Vẽ đường tròn tâm \(O\), bán kính \(2cm\).

b) Vẽ hình vuông nội tiếp đường tròn \((O)\) ở câu a)

c) Tính bán kính \(r\) của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn \((O;r)\).

Hướng dẫn giải

+) Sử dụng compa à thước kẻ để vẽ hình.

+) Sử dụng định lý Pi-ta-go để tính \(r.\)

Lời giải chi tiết

a) Chọn điểm \(O\) làm tâm, mở compa có độ dài \(2cm\) vẽ đường tròn tâm \(O\), bán kính \(2cm\): \((O; 2cm).\)

Vẽ bằng eke và thước thẳng.

b) Vẽ đường kính \(AC\) và \(BD\) vuông góc với nhau. Nối \(A\) với \(B\), \(B\) với \(C\), \(C\) với \(D\), \(D\) với \(A\) ta được tứ giác \(ABCD\) là hình vuông nội tiếp đường tròn \((O;2cm)\)

c) Kẻ \(OH \bot AD.\)

Khi đó ta có \(OH\) là bán kính \(r\) của đường tròn nội tiếp hình vuông \(ABCD\).

Ta có: \(\Delta OAD\) là tam giác vuông cân tại \(O\) lại có \(OH\) là đường cao \(\Rightarrow \, H\) là trung điểm của \(AD \Rightarrow OH=AH=HD.\)

\( \Rightarrow r = OH = AH.\)

 Áp dụng định lý Pi-ta-go cho tam giác vuông \(OHD\) ta có:

 \({r^2} + {r^2} = O{A^2} = {2^2} \Rightarrow 2{r^2} = 4 \Rightarrow r = \sqrt 2 (cm).\)

Vẽ đường tròn \((O;\sqrt2cm)\). Đường tròn này nội tiếp hình vuông, tiếp xúc bốn cạnh hình vuông tại các trung điểm của mỗi cạnh.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK