Đố em biết vì sao khi \(a > 0\) và phương trình \(a{x^2} + bx + c = 0\) vô nghiệm thì\(a{x^2} + bx + c > 0\) với mọi giá trị của \(x \)?
+) Phương trình vô nghiệm khi \(\Delta < 0\).
+) Biến đổi \(ax^2+bx+c=a\left ( x + \dfrac{b}{2a} \right )^{2}-\dfrac{b^{2}-4ac}{4a}\) rồi đánh giá từng hạng tử.
Lời giải chi tiết
Khi \(a > 0\) và phương trình vô nghiệm thì \(\Delta = b{^2} - 4ac<0\).
Do đó: \(-\dfrac{b^{2}-4ac}{4a} > 0\)
Lại có: \(a{x^2} + bx + c=a\left ( x + \dfrac{b}{2a} \right )^{2}-\dfrac{b^{2}-4ac}{4a}\)
\(=a\left ( x + \dfrac{b}{2a} \right )^{2}+ {\left(-\dfrac{b^{2}-4ac}{4a}\right)}\)
Vì \(a\left ( x + \dfrac{b}{2a} \right )^{2} \ge 0\) với mọi \(x\).
và có \(-\dfrac{b^{2}-4ac}{4a} > 0\)
Vì tổng của số không âm và số dương là một số dương do đó
\(a\left ( x + \dfrac{b}{2a} \right )^{2}+ {\left(\dfrac{b^{2}-4ac}{4a}\right)} >0\) với mọi \(x\).
Hay \(a{x^2} + bx + c >0\) với mọi \(x\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK