Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Đường thẳng OO’ cắt (O) và (O’) lần lượt tại B và C (khác A). Gọi DE là tiếp tuyến chung ngoài của (O) và (O’). Trong đó, \(D ∈ (O), E ∈ (O’)\). Gọi H là giao điểm của hai đường thẳng BD và CE. Chứng minh rằng :
a. \(\widehat {DHE} = 90^\circ \)
b. HA là tiếp tuyến chung của hai đường tròn (O) và (O’).
a. DE là tiếp tuyến chung ngoài của (O) và (O’) nên \(DE ⊥ OD\).
và \(DE ⊥ O’E ⇒ OD // O’E.\)
Do đó: \(\widehat {DOO'} + \widehat {EO'O} = 180^\circ \) (cặp góc trong cùng phía)
\( \Rightarrow \widehat {DOB} + \widehat {EO'C} = 180^\circ \)
Các tam giác BOD và CO’E cân tại O và O’ nên:
\(2\widehat B + 2\widehat C = 180^\circ \)
\(\Rightarrow 2\left( {\widehat B + \widehat C} \right) = 180^\circ \Rightarrow \widehat B + \widehat C = 90^\circ \)
Trong tam giác BHC ta có \(\widehat {BHC} = 90^\circ \,\,hay\,\,\widehat {DHE} = 90^\circ .\)
b. Dễ thấy tứ giác HDAE là hình chữ nhật (có ba góc vuông).
Gọi I là giao điểm hai đường chéo AH và DE, ta có \(ID = IA\) ( tính chất hai đường chéo hình chữ nhật).
Các tam giác ODI và OAI có : OI chung, \(DI = AI\) (cmt), \(OD = OA (=R)\)
Vậy \(∆ODI = ∆OAI\) (c.c.c)
\( \Rightarrow \widehat {OAI} = \widehat {ODI} = 90^\circ \) hay \(IA ⊥ BC\) tại A
\(⇒ HA\) là tiếp tuyến chung của (O) và (O’)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK