Cho đường tròn (O). Hai dây AB và CD song song với nhau. Biết \(AB = 30cm, CD = 40cm\), khoảng cách giữa hai dây là 35cm. Tính bán kính đường tròn (O).
Kẻ \(OH ⊥ AB\), ta có:
\(HA = HB = {{AB} \over 2} = {{30} \over 2} = 15\,\left( {cm} \right)\) (định lí đường kính dây cung)
Mặt khác: vì AB // CD (gt)
nên \(OH ⊥ CD\) tại K, ta có:
\(KC = KD = {{CD} \over 2} = {{40} \over 2} = 20cm\)
Khi đó các tam giác AHO và CKO vuông. Theo định lí Pi-ta-go :
\(\eqalign{ & A{H^2} + O{H^2} = O{A^2}\left( { = {R^2}} \right) \cr & C{K^2} + O{K^2} = O{C^2}\left( { = {R^2}} \right) \cr & \Rightarrow A{H^2} + O{H^2} = C{K^2} + O{K^2}\,\left( * \right) \cr} \)
Đặt \(OK = x ⇒ OH = 35 – x\) (**)
Thay (**) vào (*), ta có:
\(\eqalign{ & {15^2} + {\left( {35 - x} \right)^2} = {20^2} + {x^2} \cr & \Leftrightarrow 225 + 1225 - 70x + {x^2} = 400 + {x^2} \cr & \Leftrightarrow 70x = 1050 \Leftrightarrow x = 15 \cr} \)
Xét tam giác vuông CKO ta có:
\(C{O^2} = O{K^2} + C{K^2}\) (định lí Pi-ta-go)
hay \({R^2} = {15^2} + {20^2} \Rightarrow {R^2} = 625\)
\(\Rightarrow R = 25\,\left( {cm} \right)\)
Vậy bán kính đường tròn là 25cm.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK