Cho đường tròn (O) đường kính \(AB = 2R\). Một dây CD không đi qua tâm O sao cho \(\widehat {COD} = 90^\circ \) và CD cắt đường thẳng AB tại E (D nằm giữa hai điểm E và C), biết \(OE = 2R\). Tính độ dài EC và ED theo R.
Ta có: \(\widehat {COD} = 90^\circ \) (gt) nên ∆COD vuông cân tại O, ta có:
\(CD = \sqrt {O{C^2} + O{D^2}} = \sqrt {2{R^2}} = R\sqrt 2 \)
Kẻ \(OH ⊥ CD\), ta có: \(HC = HD\) (định lí đường kính dây cung)
Mặt khác ∆COD vuông cân nên OH đồng thời là trung tuyến:
\(HC = HD = OH = {{CD} \over 2} = {{R\sqrt 2 } \over 2}\)
Xét tam giác vuông OHE, ta có:
\(EH = \sqrt {O{E^2} - O{H^2}} \) (định lí Pi-ta-go)
\(\eqalign{ & EH = \sqrt {{{\left( {2R} \right)}^2} - {{\left( {{{R\sqrt 2 } \over 2}} \right)}^2}} \cr&\;\;\;\;\;\;\;= {{R\sqrt {14} } \over 2} \cr & \Rightarrow ED = EH - HD \cr&\;\;\;\;\;\;\;\;\;\,\;\;= {{R\sqrt {14} } \over 2} - {{R\sqrt 2 } \over 2}\cr& \;\;\;\;\;\;\;\;\;\;\;\,= {{R\sqrt {14} - R\sqrt 2 } \over 2} \cr & EC = EH + HC = {{R\sqrt {14} + R\sqrt 2 } \over 2} \cr} \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK