Trang chủ Lớp 9 Toán Lớp 9 SGK Cũ Ôn tập chương II – Hàm số bậc nhất Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 2 - Đại số 9

Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 2 - Đại số 9

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 1. Cho hai đường thẳng : \(y = (m – 1)x + 1\) (d1) và \(y = (2 – m)x + 2\) (d2) \((m ≠ 1, m ≠ 2)\)

a. Tìm m để hai đường thẳng song song

b. Chứng tỏ (d1) luôn đi qua 1 điểm cố định

c. Tìm m để hàm số \(y = (2 – m)x + 2\) đồng biến trên \(\mathbb R\)

d. Tìm m để (d2) qua điểm \(M(1; 2)\)

Bài 2. Cho hàm số \(y = -x + 1\)

a. Vẽ đồ thị của hàm số trên.

Từ đó suy ra đồ thị của hàm số \( y = \left| { - x + 1} \right|\)  

b. Đồ thị của hàm số \(y = -x + 1\) cắt Ox, Oy lần lượt tại A và B. Tính diện tích tam giác OAB.

Hướng dẫn giải

Bài 1. a. (d1) // (d2) \(  \Leftrightarrow \left\{ {\matrix{   {m - 1 = 2 - m}  \cr   {1 \ne 2}  \cr  } } \right. \Leftrightarrow m = {3 \over 2}\)  

b. Gọi \(A({x_0}{\rm{; }}{y_0})\) là điểm cố định cần tìm.

(d1) qua A \(  \Leftrightarrow {y_0} = \left( {m - 1} \right){x_0} + 1\)  (với mọi m)

\(  \Leftrightarrow {x_0}m + 1 - {y_0} - {x_0} = 0\)  (với mọi m)

Phương trình bậc nhất của m có vô số nghiệm

\(  \Leftrightarrow \left\{ {\matrix{   {{x_0} = 0}  \cr   {1 - {y_0} - {x_0} = 0}  \cr } } \right. \Leftrightarrow \left\{ {\matrix{   {{x_0} = 0}  \cr   {{y_0} = 1}  \cr  } } \right.\)  

Vậy \(A(0; 1)\).

c. Hàm số \(y = (2 – m)x + 2\) đồng biến trên \(\mathbb R\) \(⇔ 2 – m > 0 ⇔ m < 2\)

d. \(M ∈ (d_2)\)\(\; ⇔ 2 = (2 – m).1 + 2 ⇔ m = 2\)

Bài 2. a. Bảng giá trị:

x

1

0

y

0

1

x

1

0

y

0

1

Đồ thị của hàm số là đường thẳng (d) qua hai điểm \(A(1; 0)\) và \(B(0; 1)\).

Ta có:

\( \eqalign{  & \left| {1 - x} \right| \cr&= \left\{ {\matrix{   { - x + 1\,\text{ nếu }\, - x + 1 \ge 0}  \cr   { - \left( { - x + 1} \right)\,\text{ nếu }\, - x + 1 < 0}  \cr  } } \right.  \cr  &  = \left\{ {\matrix{   { - x + 1\,\text{ nếu }\,x \le 1}  \cr   {x - 1\,\text{ nếu }\,x > 1}  \cr  } } \right. \cr} \)  

Vậy đồ thị của hàm số \( y = \left| { - x + 1} \right|\)  được suy ra từ đồ thị của hàm số \(y = -x + 1\) bằng cách sau:

+ Tia At được giữ nguyên.

+ Lấy đối xứng tia At’ qua trục hoành, ta được đồ thị của hàm số \( y = \left| { - x + 1} \right|\)  là đường gấp khúc tAu.

b. Ta có: \( {S_{OAB}} = {1 \over 2}OA.OB = {1 \over 2}\)  (đvdt)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK