Lý thuyết Bài tập

Tóm tắt bài

Đề bài
a) Vẽ đồ thị hàm số \(y = x\) và \(y =2x\) trên cùng một mặt phẳng tọa độ \(Oxy\)  \((h.5)\).

b) Đường thẳng song song với trục \(Ox\) và cắt trục \(Oy\) tại điểm có tung độ \(y = 4\) lần lượt cắt các đường thẳng \(y = 2x,\ y = x\) tại hai điểm \(A\) và \(B\).

Tìm tọa độ của các điểm \(A,\ B\) và tính chu vi, diện tích của tam giác \(OAB\) theo đơn vị đo trên các trục tọa độ là xentimét.

Hướng dẫn giải

a) Cách vẽ đồ thị hàm số \(y=ax,\ (a \ne 0)\):  Cho \(x=x_0 \Rightarrow y_0=ax_0\)

Đồ thị hàm số \(y=ax\, \, (a\neq 0)\) là đường thẳng đi qua gốc tọa độ và điểm \(A(x_0;y_0)\)

b) +) Đường thẳng song song với trục \(Ox\) cắt trục \(Oy\) tại điểm có tung độ \(y=b\) có phương trình đường thẳng là \(y=b\).

+) Muốn tìm tọa độ giao điểm của hai đường thẳng \(y=ax\) và \(y=a'x\) ta giải phương trình \(ax=a'x\) tìm được hoành độ. Thay hoành độ vào một trong hai đường thẳng trên tìm được tung độ.

+) Sử dụng đinh lí Py - ta - go trong tam giác vuông: \(\Delta ABC\) vuông tại \(A\) thì \(AB^2+ AC^2 =BC^2\).

+) Chu vi tam giác: \(C_{∆OAB}= AB+BC+AC.\)

+) Diện tích \(\Delta ABC\) có đường cao \(h\)  và \(a\) là độ dài cạnh ứng với đường cao: \(S_{∆OAB}=\dfrac{1}{2}.h.a\)

Lời giải chi tiết

a) Xem hình trên và vẽ lại

b)

+) Ta có mỗi ô vuông trên hình \(5\) là một hình vuông có cạnh là \(1cm\).

    Từ hình vẽ ta xác định được: \(A(2; 4),\ B(4; 4)\).

+) Tính độ dài các cạnh của \(∆OAB\):

Dễ thấy \(AB = 4 - 2 = 2\)  \((cm)\).

Áp dụng định lý Py-ta-go, ta có:

\(\eqalign{
& OA = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \left( {cm} \right) \cr
& OB = \sqrt {{4^2} + {4^2}} = 4\sqrt 2 \left( {cm} \right) \cr} \)

\(\Rightarrow\) Chu vi \(\Delta ABC\) là:

\(C_{\Delta ABC}=OA + OB + AB \)

              \(=2+ 2\sqrt 5 + 4\sqrt 2  \approx  12,13(cm)\)

+) Tính diện tích \(∆OAB\):

Gọi \(C\) là điểm biểu diễn số \(4\) trên trục tung, ta có:

Cách 1:

\(\eqalign{
& {S_{\Delta OAB}} = {S_{\Delta OBC}} - {S_{\Delta OAC}} \cr
& = {1 \over 2}OC.OB - {1 \over 2}OC.AC \cr
& = {1 \over 2}{.4^2} - {1 \over 2}.4.2 = 8 - 4 = 4\left( {c{m^2}} \right) \cr} \)

Cách 2: 

\(∆OAB\) có đường cao ứng với cạnh \(AB\) là \(OC\).

\( \Rightarrow S_{∆OAB}=\dfrac{1}{2}.OC.AB=\dfrac{1}{2}.4.2=4\) \((cm^2)\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK