Bài 18 trang 75 SGK Toán 8 tập 1

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Chứng minh định lí "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD \(\left( {AB//C{\rm{D}}} \right)\) có AC = BD.

Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng mình rằng:

a) ∆BDE là tam giác cân.

b) ∆ACD = ∆BDC.

c) Hình thang ABCD là hình thang cân.

Hướng dẫn giải

Áp dụng: Tính chất hình thang cân, tính chất tam giác cân, dấu hiệu nhận biết hình thang cân.

Lời giải chi tiết

a) E thuộc đường thẳng DC nên CE // AB.

Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song (gt) nên \( \Rightarrow AC = BE\) (1)  (tính chất hình thang )              

Lại có: AC = BD (gt)   (2)

Từ (1) và (2) suy ra BE = BD \( \Rightarrow \Delta BED\) cân tại B (dấu hiệu nhận biết tam giác cân).

b) Ta có \(AC{\rm{ }}//{\rm{ }}BE \Rightarrow \widehat {{C_1}} = \widehat E\) (2 góc đồng vị) (3)

  ∆BDE cân tại B (cmt) \( \Rightarrow \widehat {{D_1}} = \widehat E\) (4)

Từ (3) và (4) \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)

Xét  ∆ACD và  ∆BCD có:

AC = BD (gt)

  (cmt)

CD chung

Nên ∆ACD = ∆BDC (c.g.c)

c) Ta có: ∆ACD = ∆BDC (cmt)

\( \Rightarrow \widehat {A{\rm{D}}C} = \widehat {BCD}\) (2 góc tương ứng)

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK