Bài tập 20 trang 15 SGK Toán 9 Tập 1

Lý thuyết Bài tập
Câu hỏi:

Bài tập 20 trang 15 SGK Toán 9 Tập 1

Rút gọn các biểu thức sau:

a) \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}\) với \(a\geq 0\);                              b) \(\sqrt{13a}.\sqrt{\frac{52}{a}}\) với \(a > 0\);

c) \(\sqrt{5a}.\sqrt{45a}- 3a\)  với \(a\geq 0\);                  d) \((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}\)

 

Để rút gọn biểu thức trên, ta cần nắm vững quy tắc khai phương một tích đã học, điều kiện xác định để căn thức tồn tại, và dấu của các phép tính khi đã khai căn ở bài 20 như sau:

Câu a:

  \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a.3a}{3.8}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\) (vì \(a\geq 0\))

Câu b:

\(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{13.52a}{a}}=\sqrt{13.13.4}=13.2=26\) (vì \(a>0\))

Câu c:

Do \(a\geq 0\) nên bài toán luôn được xác định có nghĩa.

\(\sqrt{5a}.\sqrt{45a}- 3a=\sqrt{5.5.9.a^2}-3a=15a-3a=12a\)

Câu d:

\((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}\)

\((3-a)^2-\sqrt{2.18.a^2}=(3-a)^2-6|a|=a^2-6a-|6a|+9\)

TH1:\(a\geq 0\Rightarrow |a|=a\Rightarrow\) \((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=a^2-12a+9\)

TH2: \(a<0\Rightarrow |a|=-a\Rightarrow\)\((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=a^2+9\)

 

-- Mod Toán 9

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK