Tìm vị trí của M để tứ giác ABDC có chu vi nhỏ nhất.

Câu hỏi :

Cho nửa đường tròn tâm  O đường kính AB. Vẽ các tiếp tuyến Ax và By (Ax và By và nửa đường tròn cùng thuộc về một nửa mặt phẳng bờ là AB ). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax và By theo thứ tự tại C và D. Tìm vị trí của M để tứ giác ABDC có chu vi nhỏ nhất

A. M là trung điểm của CD

B. OM//AB

C. OM⊥AB.

D. OM//Ax

* Đáp án

C

* Hướng dẫn giải

Xét tứ giác ABDC có: AC//BD⇒ABDC là hình thang

Vì hai tiếp tuyến CD và Ax cắt nhau tại C, hai tiếp tuyến DC  và By  cắt nhau tại D  nên AC=CM;BD=BM  (tính chất hai tiếp tuyến cắt nhau).

Chu vi hình thang  ABDC  là 

\(\begin{array}{l} {C_{ABDC}} = AC + AB + BD + CD = CM + AB + DM + CD = AB + 2CD\\ \Rightarrow {C_{ABDC}}_{\min }{\mkern 1mu} {\mkern 1mu} {\rm{khi}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} C{D_{\min }} \Rightarrow CD = AB \Rightarrow CD//AB \end{array}\)

Mà \( OM\: \bot CD \Rightarrow OM\: \bot AB \Rightarrow {C_{ABDC\min }} = AB + 2AB = 3AB\)

Vậy chu vi nhỏ nhất của hình thang ABDC là 3AB  khi OM⊥AB.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK