Bất phương trình: (x^2 - 3x - 4) . căn bậc hai (x^2 - 5) < 0 có bao nhiêu

Câu hỏi :

Bất phương trình: \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\] có bao nhiêu nghiệm nguyên dương?


A. 0;



B. 1;



C. 2;



D. 3.


* Đáp án

* Hướng dẫn giải

Ta có điều kiện: x2 – 5 ≥ 0\[ \Leftrightarrow \left[ \begin{array}{l}x \le - \sqrt 5 \,\\x \ge \sqrt 5 \end{array} \right.\].

Vậy \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\]\[ \Leftrightarrow \] x2 – 3x – 4 < 0.

Xét x2 – 3x – 4 = 0 \[ \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 4\end{array} \right.\]

Ta có bảng xét dấu

Bất phương trình: (x^2 - 3x - 4) . căn bậc hai (x^2 - 5) < 0 có bao nhiêu (ảnh 1)

Dựa vào bảng xét dấu ta có x2 – 3x – 4 < 0 \[ \Leftrightarrow \] – 1 < x < 4

Kết hợp với điều kiện ta được: \[x \in \left( {\sqrt 5 ;4} \right)\]. Suy ra nghiệm nguyên dương của bất phương trình đã cho là: x = 3.

Vậy bất phương trình có 1 nghiệm nguyên dương.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài tập cuối chương 6 có đáp án !!

Số câu hỏi: 60

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK