Cho tam giác ABC vuông tại A. Vẽ đường thẳng d đi qua A và song song với đường thẳng BC, BH vuông góc với d tại H. a) Chứng minh ∆ABC ∆HAB. b) Gọi K là hình chiếu của C trên d. Chứ...

Câu hỏi :

Cho tam giác ABC vuông tại A. Vẽ đường thẳng d đi qua A và song song với đường thẳng BC, BH vuông góc với d tại H.

a) Chứng minh ∆ABC∆HAB.

b) Gọi K là hình chiếu của C trên d. Chứng minh AH.AK = BH.CK.

c) Gọi M là giao điểm của hai đoạn thẳng AB và HC. Tính độ dài đoạn thẳng HA và diện tích ∆MBC, khi AB = 3cm, AC = 4cm, BC = 5cm.

* Đáp án

* Hướng dẫn giải

GT

∆ABC vuông tại A;

Đường thẳng d đi qua A, d // BC;

BHd  (Hd);

K là hình chiếu của C trên d;

ABHC=M; AB = 3cm, AC = 4cm, BC = 5cm.

KL

a) ∆ABC  ∆HAB.

b) AH.AK = BH.CK.

c) Tính độ dài HA và diện tích ∆MBC.

Cho tam giác ABC vuông tại A. Vẽ đường thẳng d đi qua A và song song với đường thẳng BC, BH vuông góc với d tại H. a) Chứng minh ∆ABC   ∆HAB. b) Gọi K là hình chiếu của C trên d. Chứng minh AH.AK = BH.CK. c) Gọi M là giao điểm của hai đoạn thẳng AB và HC. Tính độ dài đoạn thẳng HA và diện tích ∆MBC, khi AB = 3cm, AC = 4cm, BC = 5cm. (ảnh 1)

a) Ta có BAC^=90o (vì ∆ABC vuông tại A) và AHB^=90o (AH ^ BH)

Nên BAC^=AHB^=90o.

Xét ∆ABC và ∆HAB có:

BAC^=AHB^=90o (cmt)

ABC^=BAH^ (d // BC, hai góc so le trong)

Do đó ∆ABC∆HAB (g.g).

b) Ta có AKC^=90o (vì K là hình chiếu của C trên d) nên AHB^=AKC^=90o.

Lại có CAK^+BAH^=BAC^=90o;

BAH^+ABH^=90o(∆HAB vuông ở H)

Do đó CAK^=ABH^.

Xét ∆HAB và ∆KCA có:

AHB^=AKC^=90o (cmt)

CAK^=ABH^ (cmt)

Do đó ∆HAB ∆KCA (g.g)

Suy ra HAKC=HBKA Û AH.AK = BH.CK (đpcm).

c) Từ câu a: ∆ABC  ∆HAB BCAB=ABHA53=3HA 

  HA=3.35=95  (cm).

Ta có AH // BC, áp dụng định lý Ta-let: BCAH=BMMA 

AM=AH.BMBC=95.BM5=925BM.

Lại có AM + BM = AB = 3 (cm).

AB=925BM+BM=3425  BM=3

BM=7534  (cm)

Diện tích tam giác MBC là:

SMBC=12.AC.MB=12.4  .  7534=7517 (cm2).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK