Cho 2 mặt phẳng \(\left( P \right)\) và \(\left( Q \right).\) Căn cứ vào số đường thẳng chung của 2 mặt phẳng ta có ba trường hợp sau:
a. Hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) không có đường thẳng chung, tức là:
\(\left( P \right) \cap \left( Q \right) = \emptyset \Leftrightarrow \left( P \right)\parallel \left( Q \right).\)
b. Hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) chỉ có một đường thẳng chung, tức là:
\(\left( P \right) \cap \left( Q \right) = a \Leftrightarrow \left( P \right)\) cắt \(\left( Q \right)\,.\)
c. Hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) có 2 đường thẳng chung phân biệt, tức là:
\(\left( P \right) \cap \left( Q \right) = \left\{ {a,\,\,b} \right\} \Leftrightarrow \left( P \right) \equiv \left( Q \right).\)
Định lí 1: Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,\,\,b\) cắt nhau và cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song \(\left( Q \right).\)
Tức là: \(\left\{ \begin{array}{l}a,\,\,b \in \left( P \right)\\a \cap b = \left\{ I \right\}\\a\parallel \left( P \right),\,\,b\parallel \left( Q \right)\end{array} \right. \Rightarrow \,\,\left( P \right)\parallel \left( Q \right).\)
Tính chất 1: Qua một điểm nằm ngoài một mặt phẳng, có một và chỉ một mặt phẳng song song với mặt phẳng đó.
Tức là: \(O \notin \left( P \right) \Rightarrow \,\,\exists !\,\,\left( Q \right):\left\{ \begin{array}{l}O \in \left( Q \right)\\\left( P \right)\parallel \left( Q \right)\end{array} \right.\,.\)
Cách dựng: - Trong \(\left( P \right)\) dựng \(a,\,\,b\) cắt nhau.
Hệ quả 1: Nếu đường thẳng \(a\) song song với mặt phẳng \(\left( Q \right)\) thì qua \(a\) có một và chỉ một mặt phẳng \(\left( P \right)\) song song với \(\left( Q \right).\)
Hệ quả 2: Hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì song song với nhau.
Tính chất 2: Nếu hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song thì mặt phẳng \(\left( R \right)\) đã cắt \(\left( P \right)\) thì phải cắt \(\left( Q \right)\) và các giao tuyến của chúng song song.
Tức là: \(\left\{ \begin{array}{l}\left( P \right)\parallel \left( Q \right)\\a = \left( P \right) \cap \left( R \right)\\b = \left( Q \right) \cap \left( R \right)\end{array} \right. \Rightarrow \,\,a\parallel b.\)
Định lí Ta – lét trong không gian: Ba mặt phẳng đôi một song song chắn trên hai cát tuyến bất kì các đoạn thẳng tương ứng tỷ lệ.
Tức là: \(\left\{ \begin{array}{l}\left( P \right)\parallel \left( Q \right)\parallel \left( R \right)\\a \cap \left( P \right) = {A_1};\,\,a \cap \left( Q \right) = {B_1};\,\,a \cap \left( R \right) = {C_1}\\b \cap \left( P \right) = {A_2};\,\,b \cap \left( Q \right) = {B_2};\,\,b \cap \left( P \right) = {C_2}\end{array} \right.\)
\( \Rightarrow \,\,\frac{{{A_1}{B_1}}}{{{B_1}{C_1}}} = \frac{{{A_2}{B_2}}}{{{B_2}{C_2}}}\,.\)
Định nghĩa hình lăng trụ: Hình lăng trụ là một hình đa diện có hai mặt nằm trong hai mặt phẳng song song gọi là hai đáy và tất cả các cạnh không thuộc hai cạnh đáy đều song song với nhau.
Trong đó:
Từ định nghĩa của hình lăng trụ, ta lần lượt suy ra các tính chất sau:
a. Các cạnh bên song song và bằng nhau.
b. Các mặt bên và các mặt chéo là những hình bình hành.
c. Hai đáy là hai đa giác có các cạnh tương ứng song song và bằng nhau.
Định nghĩa hình hộp: Hình lăng trụ có đáy là hình bình hành gọi là hình hộp.
a. Hình hộp có tất cả các mặt bên và các mặt đáy đều là hình chữ nhật gọi là hình hộp chữ nhật.
b. Hình hộp có tất cả các mặt bên và các mặt đáy đều là hình vuông gọi là hình lập phương.
Chú ý: Các đường chéo của hình hộp cắt nhau tại trung điểm mỗi đường.
Định nghĩa: Cho hình chóp \(S.{A_1}{A_2}...{A_n}.\) Một mặt phẳng \(\left( P \right)\) song song với mặt phẳng chứa đa giác đáy cắt các cạnh \(S{A_1},\,\,S{A_2},\,\,...,\,\,S{A_n}\) theo thứ tự tại \({A'_1},\,\,{A'_2},\,\,...,\,\,{A'_n}\,.\) Hình tạo bởi thiết diện \({A'_1}{A'_2}...{A'_n}\) và đáy \({A_1}{A_2}...{A_n}\) của hình chóp cùng với các mặt bên \({A_1}{A_2}{A'_2}{A'_1},\,\,{A_2}{A_3}{A'_3}{A'_2},\,\,...,\,\,{A_n}{A_1}{A'_1}A'{ _n}\) gọi là một hình chóp cụt.
Trong đó:
Đáy của hình chóp gọi là đáy lớn của hình chóp cụt, còn thiết diện gọi là đáy nhỏ của hình chóp cụt.
Tùy theo đáy là tam giác, tứ giác, ngũ giác,… ta có hình chóp cụt tam giác, hình chóp cụt tứ giác, hình chụp cụt ngũ giác,…
Tính chất: Với hình chóp cụt, ta có các tính chất sau:
1. Hai đáy của hình chóp cụt là hai đa giác đồng dạng.
2. Các mặt bên của hình chóp cụt là các hình thang.
3. Các cạnh bên của hình chóp cụt đồng quy tại một điểm.
Phương pháp:
Để chứng minh hai mặt phẳng song song ta có thể thực hiện theo một trong hai hướng sau:
\(\left\{ \begin{array}{l}a \subset \left( \alpha \right),b \subset \left( \alpha \right)\\a \cap b = I\\a\parallel \left( \beta \right)\\b\parallel \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right)\parallel \left( \beta \right)\).
\(\left\{ \begin{array}{l}\left( \alpha \right)\parallel \left( \gamma \right)\\\left( \beta \right)\parallel \left( \gamma \right)\end{array} \right. \Rightarrow \left( \alpha \right)\parallel \left( \beta \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\), gọi \(M,N\) lần lượt là trung điểm của \(SA,SD\). Chứng minh \(\left( {OMN} \right)//\left( {SBC} \right)\).
Ta có \(M,O\) lần lượt là trung điểm của \(SA,AC\) nên \(OM\) là đường trung bình của tam giác \(SAC\) ứng với cạnh \(SC\)do đó \(OM\parallel SC\).
Vậy \(\left\{ \begin{array}{l}OM\parallel SC\\SC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow OM\parallel \left( {SBC} \right){\rm{ }}\left( 1 \right)\).
Tương tự, Ta có \(N,O\) lần lượt là trung điểm của \(SD,BD\) nên \(ON\) là đường trung bình của tam giác \(SBD\) ứng với cạnh \(SB\)do đó \(OM//SB\).
Vậy \(\left\{ \begin{array}{l}ON\parallel SB\\SB \subset \left( {SBC} \right)\end{array} \right. \Rightarrow OM\parallel \left( {SBC} \right){\rm{ }}\left( 2 \right)\). Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(\left\{ \begin{array}{l}OM\parallel \left( {SBC} \right)\\ON\parallel \left( {SBC} \right)\\OM \cap ON = O\end{array} \right. \Rightarrow \left( {OMN} \right)\parallel \left( {SBC} \right)\).
Phương pháp:
Sử dụng \(\left\{ \begin{array}{l}\left( \alpha \right)\parallel \left( \beta \right)\\\left( \beta \right)\parallel \left( \gamma \right)\\\left( \beta \right) \cap \left( \gamma \right) = d\\M \in \left( \alpha \right) \cap \left( \gamma \right)\end{array} \right. \Rightarrow \left( \alpha \right) \cap \left( \gamma \right) = d'\parallel d,M \in d'\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành và \(M,N\) lần lượt là trung điểm của \(AB,CD\). Xác định thiết diện của hình chóp cắt bởi \(\left( \alpha \right)\) đi qua \(MN\) và song song với mặt phẳng \(\left( {SAD} \right)\). Thiết diện là hình gì?
Ta có \(\left\{ \begin{array}{l}M \in \left( {SAB} \right) \cap \left( \alpha \right)\\\left( {SAB} \right) \cap \left( {SAD} \right) = SA\end{array} \right.\)\( \Rightarrow \left( {SAB} \right) \cap \left( \alpha \right) = MK\parallel SA,K \in SB\).
Tương tự \(\left\{ \begin{array}{l}N \in \left( {SCD} \right) \cap \left( \alpha \right)\\\left( \alpha \right)\parallel \left( {SAD} \right)\\\left( {SCD} \right) \cap \left( {SAD} \right) = SD\end{array} \right.\) \( \Rightarrow \left( {SCD} \right) \cap \left( \alpha \right) = NH\parallel SD,H \in SC\).
Dễ thấy \(HK = \left( \alpha \right) \cap \left( {SBC} \right)\). Thiết diện là tứ giác \(MNHK\)
Ba mặt phẳng \(\left( {ABCD} \right),\left( {SBC} \right)\) và \(\left( \alpha \right)\) đôi một cắt nhau theo các giao tuyến là \(MN,HK,BC\), mà \(MN\parallel BC \Rightarrow MN\parallel HK\).
Vậy thiết diện là một hình thang.
Phương pháp:
Định lí Thales thừng được ứng dụng nhiều trong các bài toán tỉ số hay các bài toán chứng minh đường thẳng song song với một mặt phẳng cố định.
Cho tứ diện \(ABCD\) và \(M,N\) là các điểm thay trên các cạnh \(AB,CD\) sao cho \(\frac{{AM}}{{MB}} = \frac{{CN}}{{ND}}\).
a) Chứng minh \(MN\) luôn luôn song song với một mặt phẳng cố định.
b) Cho \(\frac{{AM}}{{MB}} = \frac{{CN}}{{ND}} > 0\) và \(P\) là một điểm trên cạnh \(AC\). Tìm thiết diện của hình chóp cắt bởi \(\left( {MNP} \right)?\)
c) Tính theo \(k\) tỉ số diện tích tam giác \(MNP\) và diện tích thiết diện.
a) Do \(\frac{{AM}}{{MB}} = \frac{{CN}}{{ND}}\) nên theo định lí Thales thì các đường thẳng \(MN,AC,BD\) cùng song song với một mặt phẳng \(\left( \beta \right)\).Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua \(AC\) và song song với \(BD\)thì \(\left( \alpha \right)\) cố định và \(\left( \alpha \right)\parallel \left( \beta \right)\)suy ra \(MN\) luôn song song với \(\left( \alpha \right)\) cố định.
b) Xét trường hợp \(\frac{{AP}}{{PC}} = k\), lúc này \(MP\parallel BC\) nên \(BC\parallel \left( {MNP} \right)\).
Ta có:
\(\left\{ \begin{array}{l}N \in \left( {MNP} \right) \cap \left( {BCD} \right)\\BC\parallel \left( {MNP} \right)\\BC \subset \left( {BCD} \right)\end{array} \right. \Rightarrow \left( {BCD} \right) \cap \left( {MNP} \right) = NQ\parallel BC,Q \in BD\).
Thiết diện là tứ giác \(MPNQ.\)c) Xét trường hợp \(\frac{{AP}}{{PC}} \ne k\)
Trong \(\left( {ABC} \right)\)gọi \(R = BC \cap MP\)
Trong \(\left( {BCD} \right)\) gọi \(Q = NR \cap BD\) thì thiết diện là tứ giác \(MPNQ\).
Gọi \(K = MN \cap PQ\)
Ta có \(\frac{{{S_{MNP}}}}{{{S_{MPNQ}}}} = \frac{{PK}}{{PQ}}\).
Do \(\frac{{AM}}{{NB}} = \frac{{CN}}{{ND}}\) nên theo định lí Thales đảo thì \(AC,NM,BD\) lần lượt thuộc ba mặt phẳng song song với nhau và đường thẳng \(PQ\) cắt ba mặt phẳng này tương ứng tại \(P,K,Q\) nên áp dụng định lí Thales ta được: \(\frac{{PK}}{{KQ}} = \frac{{AM}}{{MB}} = \frac{{CN}}{{ND}} = k\)\( \Rightarrow \frac{{PK}}{{PQ}} = \frac{{PK}}{{PK + KQ}} = \frac{{\frac{{PK}}{{KQ}}}}{{\frac{{PK}}{{KQ}} + 1}} = \frac{k}{{k + 1}}\).
Nội dung bài giảng sẽ giới thiệu đến các em các vị trí tương đối của hai mặt phẳng và những dạng bài tập liên quan đến Hai mặt phẳng song song. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng nắm được nội dung bài học này.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Chương 2 Bài 4 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 4- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Chương 2 Bài 4 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.
Bài tập 2.31 trang 78 SBT Hình học 11
Bài tập 29 trang 67 SGK Hình học 11 NC
Bài tập 30 trang 67 SGK Hình học 11 NC
Bài tập 31 trang 68 SGK Hình học 11 NC
Bài tập 32 trang 68 SGK Hình học 11 NC
Bài tập 33 trang 68 SGK Hình học 11 NC
Bài tập 34 trang 68 SGK Hình học 11 NC
Bài tập 35 trang 68 SGK Hình học 11 NC
Bài tập 36 trang 68 SGK Hình học 11 NC
Bài tập 37 trang 68 SGK Hình học 11 NC
Bài tập 38 trang 68 SGK Hình học 11 NC
Bài tập 39 trang 68 SGK Hình học 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK