Vậy thì: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung đi qua điểm chung ấy. Đường thẳng đó được gọi là giao tuyến của hai mặt phẳng .
Một mặt phẳng hoàn toàn xác định khi biết:
Các kí hiệu:
+ \(\left( {ABC} \right)\) là kí hiệu mặt phẳng đi qua ba điểm không thẳng hàng \(A,B,C\) ( h1)
+ (\left( {M,d} \right)\) là kí hiệu mặt phẳng đi qua \(d\) và điểm \(M \notin d\) (h2)
+ \(\left( {{d_1},{d_2}} \right)\) là kí hiệu mặt phẳng xác định bởi hai đường thẳng cắt nhau \({d_1},{d_2}\) (h3)
Trong mặt phẳng \(\left( \alpha \right)\) cho đa giác lồi \({A_1}{A_2}...{A_n}\). Lấy điểm \(S\) nằm ngoài \(\left( \alpha \right)\).
Lần lượt nối \(S\) với các đỉnh \({A_1},{A_2},...,{A_n}\) ta được \(n\) tam giác \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\). Hình gồm đa giác \({A_1}{A_2}...{A_n}\) và \(n\) tam giác \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\)được gọi là hình chóp , kí hiệu là \(S.{A_1}{A_2}...{A_n}\).
Ta gọi \(S\) là đỉnh, đa giác \({A_1}{A_2}...{A_n}\) là đáy , các đoạn \(S{A_1},S{A_2},...,S{A_n}\) là các cạnh bên, \({A_1}{A_2},{A_2}{A_3},...,{A_n}{A_1}\) là các cạnh đáy, các tam giác \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\) là các mặt bên…
Cho bốn điểm \(A,B,C,D\) không đồng phẳng. Hình gồm bốn tam giác \(ABC,ABD,\)
\(ACD\) và \(\left( {BCD} \right)\) được gọi là tứ diện \(ABCD\).
Phương pháp: Để xác định giao tuyến của hai mặt phẳng, ta tìm hai điểm chung của chúng. Đường thẳng đi qua hai điểm chung đó là giao tuyến.
Lưu ý: Điểm chung của hai mặt phẳng \(\left( \alpha \right)\)và \(\left( \beta \right)\)thường được tìm như sau :
Tìm hai đường thẳng \(a,b\) lần lượt thuộc \(\left( \alpha \right)\)và \(\left( \beta \right)\), đồng thời chúng cùng nằm trong mặt phẳng \(\left( \gamma \right)\) nào đó; giao điểm \(M = a \cap b\) chính là điểm chung của \(\left( \alpha \right)\)và \(\left( \beta \right)\).
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là tứ giác có các cặp cạnh đối không song song, điểm \(M\) thuộc cạnh \(SA\).
Tìm giao tuyến của các cặp mặt phẳng:
a) \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).
b) \(\left( {SAC} \right)\) và \(\left( {MBD} \right)\).
c) \(\left( {MBC} \right)\) và \(\left( {SAD} \right)\).
d) \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).
a) Gọi \(O = AC \cap BD\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right)\end{array} \right.\\ \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array}\)Lại có \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\)
\( \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\).
b) \(O = AC \cap BD\)
\( \Rightarrow \left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in BD \subset \left( {MBD} \right)\end{array} \right.\)
\( \Rightarrow O \in \left( {SAC} \right) \cap \left( {MBD} \right)\).
Và \(M \in \left( {SAC} \right) \cap \left( {MBD} \right) \Rightarrow OM = \left( {SAC} \right) \cap \left( {MBD} \right)\).
c) Trong \(\left( {ABCD} \right)\) gọi \(F = BC \cap AD \Rightarrow \left\{ \begin{array}{l}F \in BC \subset \left( {MBC} \right)\\F \in AD \subset \left( {SAD} \right)\end{array} \right. \Rightarrow F \in \left( {MBC} \right) \cap \left( {SAD} \right)\)
Và \(M \in \left( {MBC} \right) \cap \left( {SAD} \right) \Rightarrow FM = \left( {MBC} \right) \cap \left( {SAD} \right)\)
d) Trong \(\left( {ABCD} \right)\) gọi \(E = AB \cap CD\), ta có \(SE = \left( {SAB} \right) \cap \left( {SCD} \right)\).
Phương pháp:
Cho tứ diện \(SABC\). Trên \(SA,SB\) và \(SC\) lấy các điểm \(D,E\) và \(F\) sao cho \(DE\) cắt \(AB\) tại \(I\),\(EF\) cắt \(BC\) tại \(J\), \(FD\) cắt \(CA\) tại \(K\). Chứng minh I, J, K thẳng hàng.
Ta có \(I = DE \cap AB,DE \subset \left( {DEF} \right) \Rightarrow I \in \left( {DEF} \right);\)
\(AB \subset \left( {ABC} \right) \Rightarrow I \in \left( {ABC} \right){\rm{ }}\left( 1 \right)\).Tương tự \(J = EF \cap BC\)
\( \Rightarrow \left\{ \begin{array}{l}J \in EF \in \left( {DEF} \right)\\J \in BC \subset \left( {ABC} \right)\end{array} \right.{\rm{ }}\left( 2 \right)\)\(K = DF \cap AC\)
\( \Rightarrow \left\{ \begin{array}{l}K \in DF \subset \left( {DEF} \right)\\K \in AC \subset \left( {ABC} \right)\end{array} \right.{\rm{ }}\left( 3 \right)\)Từ (1),(2) và (3) ta có \(I,J,K\) là điểm chung của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {DEF} \right)\) nên chúng thẳng hàng.
Cho hình chóp tứ giác \(S.ABCD\), gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\). Một mặt phẳng \(\left( \alpha \right)\) cắt các cạnh bên \(SA,SB,SC,SD\) tưng ứng tại các điểm \(M,N,P,Q\). Chứng minh MN, PQ, SO đồng quy.
Trong mặt phẳng \(\left( {MNPQ} \right)\) gọi \(I = MP \cap NQ\).
Ta sẽ chứng minh \(I \in SO\) .
Dễ thấy \(SO = \left( {SAC} \right) \cap \left( {SBD} \right)\).
\(\left\{ \begin{array}{l}I \in MP \subset \left( {SAC} \right)\\I \in NQ \subset \left( {SBD} \right)\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}I \in \left( {SAC} \right)\\I \in \left( {SBD} \right)\end{array} \right. \Rightarrow I \in SO\)
Vậy \(MP,NQ,SO\) đồng qui tại \(I\).
Bài toán 03: TÌM GIAO ĐIỂM CỦA ĐƯỜNG THẲNG VÀ MẶT PHẲNG.
Phương pháp:
Sử dụng định nghĩa và các tính chất hoặc biểu thức tọa độ của phép tịnh tiến.
Để tìm giao điểm của đường thẳng \(d\) và mặt phẳng \(\left( P \right)\) ta cần lưu ý một số trường hợp sau:
Trường hợp 1. Nếu trong \(\left( P \right)\) có sẵn một đường thẳng \(d'\) cắt \(d\) tại \(M\), khi đó \(\left\{ \begin{array}{l}M \in d\\M \in d' \subset \left( P \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}M \in d\\M \in \left( P \right)\end{array} \right. \Rightarrow M = d \cap \left( P \right)\)
Trường hợp 2. Nếu trong \(\left( P \right)\) chưa có sẵn \(d'\) cắt \(d\) thì ta thực hiện theo các bước sau:
Cho hình chóp tứ giác \(S.ABCD\) với đáy \(ABCD\) có các cạnh đối diện không song song với nhau và \(M\) là một điểm trên cạnh \(SA\).
a) Tìm giao điểm của đường thẳng \(SB\) với mặt phẳng \(\left( {MCD} \right)\).
b) Tìm giao điểm của đường thẳng \(MC\) và mặt phẳng \(\left( {SBD} \right)\).
a) Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(E = AB \cap CD\).
Trong \(\left( {SAB} \right)\) gọi.
Ta có \(N \in EM \subset \left( {MCD} \right) \Rightarrow N \in \left( {MCD} \right)\) và \(N \in SB\) nên \(N = SB \cap \left( {MCD} \right)\).
b) Trong \(\left( {ABCD} \right)\) gọi \(I = AC \cap BD\).
Trong \(\left( {SAC} \right)\) gọi \(K = MC \cap SI\).
Ta có \(K \in SI \subset \left( {SBD} \right)\) và \(K \in MC\) nên \(K = MC \cap \left( {SBD} \right)\).
Trong thực tế, ta thường gặp các vật như: hộp phấn, kệ sách, bàn học,.. là các hình trong không gian. Môn học nghiên cứu các hình trong không gian được gọi là Hình học không gian. Để mở đầu cho khái niệm này, HOCTAP247 xin giới thiệu đến các em bài học Đại cương về đường thẳng và mặt phẳng.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Chương 2 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 6- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Chương 2 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.
Bài tập 5 trang 50 SGK Hình học 11 NC
Bài tập 6 trang 50 SGK Hình học 11 NC
Bài tập 7 trang 50 SGK Hình học 11 NC
Bài tập 8 trang 50 SGK Hình học 11 NC
Bài tập 9 trang 50 SGK Hình học 11 NC
Bài tập 10 trang 50 SGK Hình học 11 NC
Bài tập 11 trang 50 SGK Hình học 11 NC
Bài tập 12 trang 51 SGK Hình học 11 NC
Bài tập 13 trang 51 SGK Hình học 11 NC
Bài tập 14 trang 51 SGK Hình học 11 NC
Bài tập 15 trang 51 SGK Hình học 11 NC
Bài tập 16 trang 51 SGK Hình học 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK