Trang chủ Lớp 7 Toán Lớp 7 SGK Cũ Chương 1: Số Hữu Tỉ. Số Thực Toán 7 Bài 6: Lũy thừa của một số hữu tỉ (tiếp)

Toán 7 Bài 6: Lũy thừa của một số hữu tỉ (tiếp)

Lý thuyết Bài tập

Tóm tắt bài

1.1. Luỹ thừa của một tích

Luỹ thừa của một tích bằng tích các luỹ thừa:

\({(x.y)^n} = {x^n}.{y^n}\)

1.2. Luỹ thừa của một thương

Luỹ thừa của một thương bằng thương các luỹ thừa.

\({\left( {\frac{x}{y}} \right)^n} = \frac{{{x^n}}}{{{y^n}}}\,\,\,(y \ne 0)\)


Ví dụ 1:

Tính:

a. \({( - 2)^3} + {2^2} + {( - 1)^{20}} + {( - 2)^0}\).

b. \({({3^2})^2} - {( - {5^2})^2} + {\left[ {{{( - 2)}^3}} \right]^2}\).

c.  \({2^4} + 8{\left[ {{{( - 2)}^2}:\frac{1}{2}} \right]^0} - {2^{ - 2}}.4 + {( - 2)^2}\).

Hướng dẫn giải:

a.

\(\begin{array}{l}{( - 2)^3} + {2^2} + {( - 1)^{20}} + {( - 2)^0}\\ =  - {2^3} + {2^2} + {1^{20}} + 1 =  - 8 + 4 + 1 + 1 =  - 2\end{array}\).

b.

 \(\begin{array}{l}{({3^2})^2} - {( - {5^2})^2} + {\left[ {{{( - 2)}^3}} \right]^2} = {3^{2.2}} - {5^{2.2}} + {( - {2^3})^2}\\ = {3^4} - {5^4} + {2^6} = 81 - 625 + 64 =  - 480\end{array}\).

c.

\(\begin{array}{*{20}{l}} {{2^4} + 8{{\left[ {{{( - 2)}^2}:\frac{1}{2}} \right]}^0} - {2^{ - 2}}.4 + {{( - 2)}^2}}\\ { = {2^4} + 8.1 - {2^{ - 2}}{{.2}^2} + 4 = 16 + 8 - {2^{ - 2 + 2}} + 4}\\ { = 16 + 8 - {2^0} + 4 = 16 + 8 - 1 + 4 = 27} \end{array}\)


Ví dụ 2:

So sánh:

a. \({2^{300}}\) và \({3^{200}}\).

b. \({5^{300}}\) và \({3^{500}}\).

Hướng dẫn giải:

a. Ta có:

\({2^{300}} = {({2^3})^{100}} = {8^{100}}\)

\({3^{200}} = {({3^2})^{100}} = {9^{100}}\)

Vì \({8^{100}} < {9^{100}}\)

Vậy \({2^{300}} < {3^{200}}\).

b. Ta có:

\({5^{300}} = {({5^3})^{100}} = {125^{100}}\)

 \({3^{500}} = {({3^5})^{100}} = {243^{100}}\)

Vì \({125^{100}} < {243^{100}}\)

Vậy \({5^{300}} < {3^{500}}\).


Ví dụ 3:

Chứng minh rằng: \({10^9} + {10^8} + {10^7}\) chia hết cho 222.

Hướng dẫn giải:

Ta có:

\(\begin{array}{l}{10^9} + {10^8} + {10^7} = {10^7}({10^2} + 10 + 1)\\ = {(2.5)^7}({10^2} + 10 + 1)\\ = {2^7}{.5^7}(100 + 10 + 1)\\ = {2^6}{.5^7}.2.111\\ = {2^6.5^7}.222\,\, \vdots \,\,222\end{array}\).

Vậy \({10^9} + {10^8} + {10^7}\) chia hết cho 222.

Bài 1:

Tính:

a. \({\left( {\frac{1}{2}} \right)^3}.{\left( {\frac{1}{4}} \right)^2}\)

b. \(\frac{{{{27}^2}{{.8}^5}}}{{{6^6}{{.32}^3}}}\)

Hướng dẫn giải:

a. \({\left( {\frac{1}{2}} \right)^3}.\left[ {{{\left( {\frac{1}{2}} \right)}^2}} \right]\)

\( = {\left( {\frac{1}{2}} \right)^3}.{\left( {\frac{1}{2}} \right)^4} = {\left( {\frac{1}{2}} \right)^7} = \frac{1}{{128}}\)

b.

\(\frac{{{{({3^3})}^2}.{{({2^3})}^5}}}{{{{(2.3)}^6}.{{({2^5})}^3}}} = \frac{{{3^6}{{.2}^{15}}}}{{{2^6}{{.3}^6}{{.2}^{15}}}} = \frac{1}{{{2^6}}} = \frac{1}{{64}}\)


Bài 2:

Tìm x biết:

a. \({(x - 2)^2} = 1\)

b. \({(x - 1)^{x + 2}} = {(x - 1)^{x + 4}}\)

Hướng dẫn giải:

a. Ta có: \({(x - 2)^2} = 1\). Do đó

\(\begin{array}{l}x - 2 = 1 \Rightarrow x = 3\\x - 2 =  - 1 \Rightarrow x = 1\end{array}\)

Vậy x = 1; 3

b. \({(x - 1)^{x + 2}} = {(x - 1)^{x + 4}}\)

Nếu x = 1 thì \({0^3} = {0^5}\) đúng. Ta được một giá trị x = 1

Nếu \(x \ne 1 \Rightarrow x - 1 \ne 0.\) Chia 2 vế cho \({(x - 1)^{x + 2}}\) ta được: \({(x - 1)^{x + 4 - (x + 2) = 1}}\)

Hay \({(x - 1)^2} = 1.\) Do đó:

\(\begin{array}{l}x - 1 = 1 \Rightarrow x = 2\\x - 1 =  - 1 \Rightarrow x = 0\end{array}\)

Vậy x = 0; 1; 2


Bài 3:

Số các chữ số của \({4^{16}}{.5^{25}}\) là bao nhiêu?

Hướng dẫn giải:

\({4^{16}}{.5^{25}} = {({2^2})^{16}}{.5^{25}} = {2^{32}}{.5^{25}}\)

\( = {2^7}.{(2.5)^{25}} = {128.10^{25}}\)

Vậy số các chữ số của \({4^{16}}{.5^{25}}\)là 28.

3. Luyện tập Bài 6 Toán 7 tập 1

Qua bài giảng Lũy thừa của một số hữu tỉ này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Nắm vững các công thức liên quan đến lũy thừa để làm được những bài tập trong phần này

3.1. Trắc nghiệm về Lũy thừa của số hữu tỉ

Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 7 Bài 6 cực hay có đáp án và lời giải chi tiết. 

    • A. \(\frac{1}{{10000}}\)
    • B. \({10^{ - 4}}\)
    • C. \(\frac{1}{{{{10}^4}}}\)
    • D. \(\frac{1}{{{{10}^{ - 4}}}}\)
    • A. \({\left( {a + b} \right)^2} = {a^2} + 2{\rm{a}}b + {b^2}\)
    • B. \({\left( {a + b} \right)^2} = {a^2} - ab + {b^2}\)
    • C. \({\left( {a + b} \right)^2} = {a^2} - ab + {b^2}\)
    • D. \({\left( {a - b} \right)^2} = {a^2} - 2{\rm{a}}b - {b^2}\)

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2. Bài tập SGK về Lũy thừa của số hữu tỉ

Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 7 Bài 6 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Bài tập 34 trang 22 SGK Toán 7 Tập 1

Bài tập 35 trang 22 SGK Toán 7 Tập 1

Bài tập 36 trang 22 SGK Toán 7 Tập 1

Bài tập 37 trang 22 SGK Toán 7 Tập 1

Bài tập 38 trang 22 SGK Toán 7 Tập 1

Bài tập 39 trang 23 SGK Toán 7 Tập 1

Bài tập 40 trang 23 SGK Toán 7 Tập 1

Bài tập 41 trang 23 SGK Toán 7 Tập 1

4. Hỏi đáp Bài 6 Chương 1 Đại số 7 tập 1

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK