Bài 9. Tìm diện tích mặt cầu ngoại tiếp hình chóp S.ABC biết rằng SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Chứng minh rằng các điểm S, trọng tâm tam giác ABC và tâm mặt cầu ngoại tiếp hình chóp S.ABC thẳng hàng.
Gọi J là trung điểm của AB và \(l \) là đường thẳng qua J vuông góc với mp(SAB) thì \(l\) là trục của tam giác SAB (mọi điểm trên \(l \) đều cách đều S, A, B).
Gọi I là giao điểm của \(l\) với mặt phẳng trung trực đoạn CS thì I cách đều bốn điểm S, A, B, C. Mặt cầu ngoại tiếp hình chóp SABC có tâm I và bán kính R = IA. Ta có:
\({R^2} = I{A^2} = A{J^2} + I{J^2} = {\left( {{{AB} \over 2}} \right)^2} + {\left( {{{SC} \over 2}} \right)^2} = {1 \over 4}\left( {{a^2} + {b^2} + {c^2}} \right)\)
Diện tích mặt cầu là \(S = 4\pi {R^2} = \pi \left( {{a^2} + {b^2} + {c^2}} \right)\)
Vì \(SC // l \) nên SI cắt CJ tại G và \({{GJ} \over {GC}} = {{IJ} \over {SC}} = {1 \over 2}\) nên G là trọng tâm tam giác ABC. Vậy S, G và tâm mặt cầu ngoại tiếp hình chóp S.ABC thẳng hàng.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK