Bài 6 trang 45 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 6

a) Tìm tập hợp các mặt cầu tiếp xúc với ba cạnh của một tam giác cho trước.

b) Chứng minh rằng nếu có mặt cầu tiếp xúc với sáu cạnh của hình tứ diện \(ABCD\) thì \(AB + CD = AC + BD = AD + BC\)

Hướng dẫn giải

a)


Mặt cầu tâm \(O\) tiếp xúc với ba cạnh \(AB, BC, CA\) của tam giác \(ABC\) lần lượt tại các điểm \(I, J, K\) khi và chỉ khi \(OI \bot AB\,\,,\,\,OJ \bot BC\,\,,\,\,OK \bot CA\,\,,\,\,OI = OJ = OK\,\, \in \left( * \right)\)

Gọi \(O’\) là hình chiếu vuông góc của \(O\) trên mp \((ABC)\) thì các điều kiện (*) tương đương với \(O'I \bot AB\,\,,\,\,O'J \bot BC\,\,,\,\,O'K \bot CA,\,\,O'I = O'J = O'K\) hay \(O’\) là tâm đường tròn nội tiếp tam giác \(ABC\).

Từ đó suy ra tập hợp các điểm \(O\) là trục của đường tròn nội tiếp tam giác \(ABC\).

b)


Giả sử mặt cầu \((S)\) nội tiếp với các cạnh \(AB, BC, CD, DA, AC, BD\) lần lượt tại \(P, Q, R, S, T, U\). Ta cần chứng minh: \(AB + CD = AC + BD = AD + BC\)

Theo tính chất của tiếp tuyến ta có:

\(\eqalign{
& AB + CD = AP + PB + CR + RD \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = AT + BU + CT + DU \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {AT + TC} \right) + \left( {BU + UD} \right) = AC + BD \cr} \)

Vậy \(AB + CD = AC + BD\)

Chứng minh tương tự \(AC + BD = AD + BC\)

Vậy \(AB + CD = AC + BD = AD + BC\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK