Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 3. Lôgarit Bài 40 trang 93 SGK Đại số và Giải tích 12 Nâng cao

Bài 40 trang 93 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 40. Số nguyên tố dạng \({M_p} = {2^p} - 1\), trong đó p là một số nguyên tố được gọi là số nguyên tố Mec-sen (M.Mersenne, 1588-1648, người Pháp).

Ơ-le phát hiện \({M_{31}}\) năm 1750.

Luy-ca (Lucas Edouard, 1842-1891, người Pháp). Phát hiện \({M_{127}}\) năm 1876.

\({M_{1398269}}\) được phát hiện năm 1996.

Hỏi rằng nếu viết ba số đó trong hệ thập phân thì mỗi số có bao nhiêu chữ số?

(Dễ thấy rằng chữ số của \({2^p} - 1\) bằng chữ số của \({2^p}\)và để tính chữ số của \({M_{127}}\) có thể lấy \(\log 2 \approx 0,30\) và để tính chữ số của \({M_{1398269}}\) có thể lấy \(\log 2 \approx 0,30103\) (xem ví dụ 8)

Hướng dẫn giải

\({M_{31}} = {2^{31}} - 1\) và số các chữ số của \({M_{31}}\) khi viết trong hệ thập phân bằng số các chữ số của \({2^{31}}\) nên số các chữ số của \({M_{31}}\) là

\(\left[ {31.\log 2} \right] + 1 = \left[ {9,3} \right] + 1 = 10\)

Tương tự, số các chữ số của \({M_{127}} = {2^{127}} - 1\) khi viết trong hệ thập phân là

\(\left[ {127.\log 2} \right] + 1 = \left[ {38,23} \right] + 1 = 39\)

Số các chữ số của \({M_{1398269}}\) khi viết trong hệ thập phân là

\(\left[ {1398269.\log 2} \right] + 1 = 420921\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK