Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho điểm \(M(1 ; 4 ; 2)\) và mặt phẳng \((α): x + y + z -1 = 0\).

a) Tìm tọa độ điểm \(H\) là hình chiếu vuông góc của điểm \(M\) trên mặt phẳng \((α)\) ;

b) Tìm tọa độ điểm \(M'\) đối xứng với \(M\) qua mặt phẳng \((α)\).

c) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \((α)\).

Hướng dẫn giải

a) Phương pháp tìm hình chiếu của điểm M trên mặt phẳng (P).

Bước 1: Viết phương trình đường thẳng d đi qua M và vuông góc với (P).

Bước 2: Gọi \(H = d \cap \left( P \right)\), tìm tọa độ điểm H. H chính là hình chiếu vuông góc của M trên mặt phẳng (P).

b) Điểm M' đối xứng với M qua mặt phẳng (P) nhận H làm trung điểm, với H là hình chiếu vuông góc của M trên mặt phẳng (P). Tìm tạo độ điểm M'.

c) Sử dụng công thức tính khoảng cách từ 1 điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\): \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)

Lời giải chi tiết

a) Xét đường thẳng \(d\) qua \(M\) và \(d ⊥ (α)\).

Vectơ \(\overrightarrow{n}(1 ; 1 ; 1)\) là vectơ pháp tuyến của \((α)\) nên \(\overrightarrow{n}\) là vectơ chỉ phương của \(d\).

Phương trình tham số của đường thẳng \(d\) có dạng:    \(\left\{\begin{matrix} x=1+t & \\ y=4+t & \\ z=2+t & \end{matrix}\right.\).

Gọi \(H = d \cap \left( P \right)\), \(H \in d \Rightarrow H\left( {1 + t;4 + t;2 + t} \right)\), vì \(H \in \alpha\) nên ta có:

\(1 + t + 4 + t + 2 + t - 1 = 0 \Leftrightarrow 3t + 6 = 0\)

\(\Leftrightarrow t =  - 2 \Rightarrow H\left( { - 1;2;0} \right)\)

b) Gọi \(M'(x ; y ; z)\) là điểm đối xứng của \(M\) qua mặt phẳng \((α)\), thì hình chiếu vuông góc \(H\) của \(M\) xuống \((α)\) chính là trung điểm của \(MM'\).

Ta có: 

\(\left\{ \begin{array}{l}{x_{M'}} = 2{x_H} - {x_M} = 2.\left( { - 1} \right) - 1 = - 3\\{y_{M'}} = 2{y_H} - {y_M} = 2.2 - 4 = 0\\{z_{M'}} = 2{z_H} - {z_M} = 2.0 - 2 = - 2\end{array} \right. \Rightarrow M'\left( { - 3;0; - 2} \right)\)

c) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \((α)\) 

Cách 1: \(d(M,(\alpha ))=\frac{|1+4+2-1|}{\sqrt{1+1+1}}=\frac{6}{\sqrt{3}}=2\sqrt{3}\).

Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:

     \(d(M,(α) )= MH\) = \(\sqrt{2^{2}+2^{2}+2^{2}}=2\sqrt{3}\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK