Bài 5 trang 68 SGK Hình học 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:

a) \({x^2} + {\rm{ }}{y^{2}} + {\rm{ }}{z^2}-{\rm{ }}8x{\rm{ }} - {\rm{ }}2y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) ;

b) \(3{x^2} + {\rm{ }}3{y^2} + {\rm{ }}3{z^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}8y{\rm{ }} + {\rm{ }}15z{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0\).

Hướng dẫn giải

Cách 1: Đưa phương trình về dạng phương trình chính tắc: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\), suy ra tâm \(I\left( {a;b;c} \right)\) và bán kính bằng \(R\).

Cách 2: Phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\,\,\left( {{a^2} + {b^2} + {c^2} - d > 0} \right)\) là phương trình mặt cầu có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Lời giải chi tiết

a)

Cách 1: Ta có phương trình : \({x^2} + {\rm{ }}{y^{2}} + {\rm{ }}{z^2}-{\rm{ }}8x{\rm{ }} - {\rm{ }}2y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2} + {\rm{ }}{z^2} = {\rm{ }}{4^2}\)

Đây là mặt cầu tâm \(I(4; 1; 0)\) và có bán kính \(r = 4\).

Cách 2: Ta có: \(a = 4;\,\,b = 1;\,\,c = 0  ;\,\,d = 1 \Rightarrow {a^2} + {b^2} + {c^2} - d = 16 > 0\) do đó đây là phương trình mặt cầu tâm \(I\left( {4;1;0} \right)\), bán kính \(R=4\).

b)

Cách 1: Ta có phương trình:

 \(3{x^2} + {\rm{ }}3{y^2} + {\rm{ }}3{z^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}8y{\rm{ }} + {\rm{ }}15z{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0\)     

\(\Leftrightarrow {x^2} + {y^2} + {z^2}{\rm{  - }}2x + {8 \over 3}y + 5z{\rm{  - }}1 = 0\)

\(⇔ (x-1)^{2}+(y+\frac{4}{3})^{2}+(z+\frac{5}{2})^{2}= (\frac{19}{6})^{2}\).

Đây là mặt cầu tâm \(J(1; -\frac{4}{3};-\frac{5}{2})\) và có bán kính là \(R = \frac{19}{6}\).

Cách 2: 

\(\begin{array}{l}\,\,\,\,\,\,3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\\\Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + \frac{8}{3}y + 5z - 1 = 0
\end{array}\)

Ta có: \(a = 1;\,\,b =  - \frac{4}{3};\,\,c =  - \frac{5}{2};\,\,d =  - 1 \Rightarrow {a^2} + {b^2} + {c^2} - d = \frac{{336}}{{36}} > 0\) do đó đây là phương trình mặt cầu tâm \(J\left( {1; - \frac{4}{3}; - \frac{5}{2}} \right)\), bán kính \(R = \frac{{19}}{6}\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK