Một hình trụ có bán kính \(r\) và chiều cao \(h = r\sqrt3\).
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) Tính thể tích khối trụ tạo nên bởi hình trụ đã cho.
c) Cho hai điểm \(A\) và \(B\) lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng \(AB\) và trục của hình trụ bằng \(30^0\). Tính khoảng cách giữa đường thẳng \(AB\) và trục của hình trụ.
a) \({S_{xq}} = 2\pi rh,\,\,{S_{tp}} = 2\pi rh + \pi {r^2}\) với \(r;h\) lần lượt là bán kính đáy và độ dài đường cao của hình trụ.
b) \(V = \pi {r^2}h\).
c) +) Giả sử trục của hình trụ là \(O_1O_2\) và \(A\) nằm trên đường tròn tâm \(O_1\), \(B\) nằm trên đường tròn tâm \(O_2\). Kẻ \(BB_1\) // \({O_1}{O_2}\) \( \Rightarrow \widehat {\left( {AB;{O_1}{O_2}} \right)} = \widehat {\left( {AB;B{B_1}} \right)} = \widehat {AB{B_1}}\).
+) Xác định khoảng cách giữa AB và \({O_1}{O_2}\) bằng cách xác định đường vuông góc chung giữa hai đường thẳng đó.
Lời giải chi tiết
Theo công thức ta có:
\(S_{xq} = 2πrh = 2\sqrt3 πr^2\)
\(S_{tp} = 2πrh + 2πr^2 = 2\sqrt3 πr^2 + 2 πr^2 \)
\(= 2(\sqrt3 + 1)πr^2\) ( đơn vị thể tích)
b) \(V\)trụ = \(πR^2h = \sqrt3 π r^3\)
c) Giả sử trục của hình trụ là \(O_1O_2\) và \(A\) nằm trên đường tròn tâm \(O_1\), \(B\) nằm trên đường tròn tâm \(O_2\); \(I\) là trung điểm của \(O_1O_2\) , \(J\) là trung điểm của \(AB\).
Ta chứng minh \(IJ\) là đường vuông góc chung của \(O_1O_2\) và \(AB\).
Hạ \(BB_1\) vuông góc với đáy, \(J_1\) là hình chiếu vuông góc của \(J\) xuống đáy.
Dễ thấy \(J_1\) là trung điểm của \(AB_1\) (định lí đường trung bình của tam giác).
Ta có: \(\left\{ \begin{array}{l}{O_1}{J_1} \bot A{B_1}\\{O_1}{J_1} \bot B{B_1}\end{array} \right. \Rightarrow {O_1}{J_1} \bot \left( {AB{B_1}} \right)\).
Mà \(IJ//{O_1}{J_1} \Rightarrow IJ \bot \left( {AB{B_1}} \right)\) \( \Rightarrow IJ \bot AB\).
\(\left\{ \begin{array}{l}IJ//{O_1}{J_1}\\{O_1}{O_2} \bot {O_1}{J_1}\end{array} \right. \Rightarrow IJ \bot {O_1}{O_2}\).
Vậy IJ là đường vuông góc chung của \(O_1O_2\) và \(AB\) \( \Rightarrow d\left( {AB;{O_1}{O_2}} \right) = IJ\)
Ta có: \(BB_1\) // \({O_1}{O_2}\) \( \Rightarrow \widehat {\left( {AB;{O_1}{O_2}} \right)} = \widehat {\left( {AB;B{B_1}} \right)} = \widehat {AB{B_1}}\).
do vậy: \(AB_1 = BB_1.tan 30^0\) = \( \frac{\sqrt{3}}{3}h = r\).
Xét tam giác vuông \(O_1J_1A\) vuông tại \(J_1\) ta có:
\( O_{1}J^{2}_{1}\) = \( O_{1}A^{2}\) - \( AJ^{2}_{1} =\) \( r^{2} - {\left( {{r \over 2}} \right)^2}=\) \( \frac{3}{4}r^{2}\) \( \Rightarrow {O_1}{J_1} = \frac{{r\sqrt 3 }}{2}\)
Vậy khoảng cách giữa \(AB\) và \(O_1O_2\) là: \( \frac{\sqrt{3}}{2}r\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK