Bài 2 trang 145 SGK Giải tích 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hàm số: \(y =  - {1 \over 3}{x^3} + (a - 1){x^2} + (a + 3)x - 4.\)

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số khi \(a = 0.\)

b) Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng \(y = 0,\, x = -1,\, x = 1.\)

Hướng dẫn giải

+) Thay \(a=0\) vào hàm số sau đó khảo sát và vẽ đồ thị hàm số theo các bước đã được học.

+) Hình phẳng được giới hạn bởi đường các đồ thị hàm số \(y=f(x);\) \(y=g(x)\) và các đường thẳng \(x=a; \, \, x=b \, (a<b)\) có diện tích được tính bởi công thức:  \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx.} \)

Lời giải chi tiết

a) Khi \(a = 0\) ta có hàm số: \(y =  - {1 \over 3}{x^3} - {x^2} + 3x - 4\)

- Tập xác định : \((-∞; +∞)\)

- Sự biến thiên: \(y’= -x^2 – 2x + 3\)

\(y’=0 ⇔ x = 1, x = -3\)

Trên các khoảng \((-∞;-3)\) và \((1; +∞), y’ < 0\) nên hàm số nghịch biến.

Trên khoảng \((-3; 1), y’ > 0\)

_ Cực trị:

Hàm số đạt cực đại tại \(x = 1\), \({y_{CD}} = {{ - 7} \over 3}\)

Hàm số đạt cực tiểu tại \(x = -3\), \({y_{CT}} =  - 13\)

_ giới hạn vô cực : \(\mathop {\lim }\limits_{x \to  + \infty }  =  - \infty ,\mathop {\lim }\limits_{x \to  - \infty }  =  + \infty \)

Bảng biến thiên:

Đồ thị hàm số:

Đồ thị cắt trục tung tại \(y = -4\)

Đồ thị cắt trục hoành tại \(x ≈ 5, 18\)

b) Hàm số \(y =  - {1 \over 3}{x^3} - {x^2} + 3x - 4\) đồng biến trên khoảng \((-3; 1)\) nên:

\(y < y(1) = {{ - 7} \over 3} < 0\),  \(∀x ∈ (-1; 1)\)

Do đó , diện tích cần tính là:

\(\begin{array}{l}
S = \int\limits_{ - 1}^1 {\left| { - \frac{1}{3}{x^3} - {x^2} + 3x - 4} \right|dx} = \int\limits_{ - 1}^1 {\left( {\frac{1}{3}{x^3} + {x^2} - 3x + 4} \right)dx} \\
\;\; = \left. {\left( {\frac{{{x^4}}}{{12}} + \frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + 4x - 1} \right)} \right|_{ - 1}^1 = \frac{{23}}{{12}} + \frac{{27}}{4} = \frac{{26}}{3}.
\end{array}\)

 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK